реферат бесплатно, курсовые работы
 

Влияние эпифиза и его гормонов на функционирование организма

Секреция гормона роста регулируется соматолиберином и соматостатином, которые вырабатываются в гипоталамусе. Отмечено усиление выработки соматотропина при стрессорных воздействиях, истощении запасов белка в организме. Увеличение секреции происходит также при сниженном содержании глюкозы и жирных кислот в плазме крови.

Пролактин. Эффекты этого гормона заключаются в следующем:

усиливаются пролиферативные процессы в молочных железах, и ускоряется их рост;

усиливаются процессы образования и выделения молока. Секреция пролактина возрастает во время беременности и стимулируется рефлекторно при кормлении грудью. Благодаря специфическому действию на молочную железу пролактин называют маммотропным гормоном;

увеличивается реабсорбция натрия и воды в почках, что имеет значение для образования молока. В этом отношении он является синергистом альдостерона;

стимулируются образование желтого тела и выработка им прогестерона.

Продукция пролактина регулируется посредством выработки в гипоталамусе пролактостатина и пролактолиберина.

Гормоны нейрогипофиза.

Антидиуретический гормон (АДГ). В общем виде действие АДГ сводится к двум основным эффектам:

стимулируется реабсорбция воды в дистальных канальцах почек. В результате увеличивается объем циркулирующей крови, повышается АД, снижается диурез и возрастает относительная плотность мочи. В результате усиленного обратного всасывания воды снижается осмотическое давление межклеточной жидкости. Под действием АДГ происходит активация фермента аденилатциклазы, локализующегося на поверхности базолатеральной (обращенной к интерстицию) мембраны клеток эпителия почечных канальцев. Активация аденилатциклазы приводит к накоплению в цитоплазме этих клеток цАМФ. Последний диффундирует в область апикальной (обращенной в просвет почечного канальца) мембраны и стимулирует образование в цитоплазме белковых везикул, которые затем включаются в структуру апикальной мембраны и образуют в ней каналы, высокопроницаемые для воды. В результате вода из просвета почечных канальцев поступает в цитоплазму клеток эпителия канальцев, перемещается к базолатеральной мембране и, проникая через нее, попадает в интерстициальную ткань. После разрушения АДГ белковые везикулы элиминируются из структуры апикальной мембраны. В результате этого последняя становится непроницаемой для воды;

в больших дозах АДГ вызывает сужение артериол, что приводит к увеличению АД. Развитию гипертензии способствует также наблюдающееся под влиянием АДГ повышение чувствительности сосудистой стенки к констрикторному действию катехоламинов. В связи с тем, что введение АДГ приводит к повышению АД, этот гормон получил также название «вазопрессин». Однако поскольку эффект вазоконстрикции возникает только при действии больших доз АДГ, то считают, что в физиологических условиях значимость его вазоконстрикторного влияния невелика. С другой стороны, развитие вазоконстрикции может иметь существенное адаптивное значение при некоторых патологических состояниях, например при острой кровопотере, сильных болевых воздействиях, поскольку в этих условиях в крови может присутствовать большое количество АДГ.

Основная часть АДГ синтезируется в супраоптическом ядре гипоталамуса (примерно 5/6 от общего количества), меньшая часть -- в паравентрикулярном ядре. Секреция этого гормона усиливается при повышении осмотического давления крови. Последнее можно продемонстрировать путем введения гипертонического раствора в сосуды, питающие гипоталамус. В этом случае происходит раздражение осморецепторов, что приводит к увеличению выработки гормона в супраоптическом и паравентрикулярном ядрах и повышенной его секреции из задней доли гипофиза в кровь. Важным стимулом для регуляции секреции АДГ является также изменение объема циркулирующей крови. Показано, что при снижении последнего на 15--20% количество образующегося АДГ может увеличиваться в несколько десятков раз. В этом случае интенсивность секреции гормона меняется в зависимости от характера информации, поступающей в гипоталамус от волюморецепторов, реагирующих на растяжение кровью и локализующихся в правом предсердии, и барорецепторов, расположенных в аортальной и синокаротидной зонах, а также в легочной артерии.

Недостаточная секреция АДГ приводит к развитию несахарного мочеизнурения (diabetes insipidus), основными проявлениями которого являются сильная жажда (полидипсия) и потеря большого количества жидкости с выделяемой мочой (полиурия). Наблюдается учащенное мочеиспускание (поллакиурия), в результате которого больной за сутки выделяет до 10--20 л мочи низкой относительной плотности. Симптомы этого заболевания проходят при введении синтетического вазопрессина или препаратов, приготовленных из задней доли гипофиза животных.

Окситоцин. Эффекты этого гормона реализуются главным образом в двух направлениях:

окситоцин вызывает сокращение гладкой мускулатуры матки. Установлено, что при удалении гипофиза у животных родовые схватки становятся длительными и малоэффективными. Таким образом, окситоцин является гормоном, обеспечивающим нормальное протекание родового акта (отсюда произошло и его название -- от лат. oxy -- сильный, tokos -- роды). Адекватное проявление этого эффекта возможно при условии достаточной концентрации в крови эстрогенов, которые усиливают чувствительность матки к окситоцину;

окситоцин принимает участие в регуляции процессов лактации. Он усиливает сокращение миоэпителиальных клеток в молочных железах и тем самым способствует выделению молока.

Содержание окситоцина в крови возрастает в конце беременности, в послеродовом периоде. Кроме того, его продукция стимулируется рефлекторно при раздражении соска в процессе грудного вскармливания.

3.3 Эпифиз.

ЭПИФИЗ (шишковидная, или пинеальная, железа), небольшое образование, расположенное у позвоночных под кожей головы или в глубине мозга; функционирует либо в качестве воспринимающего свет органа либо как железа внутренней секреции, активность которой зависит от освещенности. У некоторых видов позвоночных обе функции совмещены. У человека это образование по форме напоминает сосновую шишку, откуда и получило свое название (греч. epiphysis - шишка, нарост).

Эпифиз развивается в эмбриогенезе из свода (эпиталамуса) задней части (диэнцефалона) переднего мозга. У низших позвоночных, например у миног, могут развиваться две аналогичных структуры. Одна, располагающаяся с правой стороны мозга, носит название пинеальной, а вторая, слева, парапинеальной железы. Пинеальная железа присутствует у всех позвоночных, за исключением крокодилов и некоторых млекопитающих, например муравьедов и броненосцев. Парапинеальная железа в виде зрелой структуры имеется лишь у отдельных групп позвоночных, таких, как миноги, http://www.krugosvet.ru/articles/02/1000232/1000232a1.htm ящерицы и лягушки.

Функция. Там, где пинеальная и парапинеальная железы функционируют в качестве органа, воспринимающего свет, или «третьего глаза», они способны различать лишь разную степень освещенности, а не зрительные образы. В этом качестве они могут определять некоторые формы поведения, например вертикальную миграцию глубоководных рыб в зависимости от смены дня и ночи.

У земноводных пинеальная железа выполняет секреторную функцию: она вырабатывает гормон мелатонин, который осветляет кожу этих животных, уменьшая занимаемую пигментом площадь в меланофорах (пигментных клетках). Мелатонин обнаружен также у птиц и млекопитающих; считается, что у них он обычно оказывает тормозящий эффект, в частности снижает секрецию гормонов гипофиза.

У птиц и млекопитающих эпифиз играет роль нейроэндокринного преобразователя, отвечающего на нервные импульсы выработкой гормонов. Так, попадающий в глаза свет стимулирует сетчатку, импульсы от которой по зрительным нервам поступают в симпатическую нервную систему и эпифиз; эти нервные сигналы вызывают угнетение активности эпифизарного фермента, необходимого для синтеза мелатонина; в результате продукция последнего прекращается. Наоборот, в темноте мелатонин снова начинает вырабатываться.

Таким образом, циклы света и темноты, или дня и ночи, влияют на секрецию мелатонина. Возникающие ритмические изменения его уровня - высокий ночью и низкий в течение дня - определяют суточный, или циркадианный, биологический ритм у животных, включающий периодичность сна и колебания температуры тела. Кроме того, отвечая на изменения продолжительности ночи изменением количества секретируемого мелатонина, эпифиз влияет на сезонные реакции, такие как зимняя спячка, миграция, линька и размножение.

У человека с деятельностью эпифиза связывают такие явления, как нарушение суточного ритма организма в связи с перелетом через несколько часовых поясов, расстройства сна и «зимние депрессии».

Часть II. Анатомия и физиология Эпифиза.

Глава 1. Сложность устройства Эпифиза.

1.1 Эмбриогенез.

Эпифиз человека очень мал, его величина варьируется от 50 до 200 мг, но кровоток в нём чрезвычайно интенсивен, что косвенно свидетельствует о важной роли его в организме. Открытие дерматологом А. Лернером в 1958 г. эпифизарного гормона - мелатонина, названного так потому, что он вызывает скопление меланиновых зёрен вокруг ядер меланоцитов, в результате чего происходит посветление кожи некоторых земноводных.

Это открытие и последующие экспериментальные исследования дали достаточно оснований для признания того, что эпифиз действительно железа внутренней секреции и её секрет - мелатонин. За последние десятилетия, после появления чувствительного специфического теста для определения мелатонина, об этом органе накоплено много информации, подчас противоречивой.

У зародыша эпифиз образуется из выпячивания крыши промежуточного мозга, из которого берут свое начало и глаза, и гипоталамус. Исторически все эти образования возникли как единое целое - некий механизм, способный реагировать на циклические изменения в световом режиме. У холоднокровных позвоночных и у птиц эпифиз выполняет хорошо известную роль “третьего глаза”, снабжая организм этих животных информацией о суточной и сезонной освещенности. Однако у млекопитающих верхний мозговой придаток, “погребенный” под разросшимися полушариями и мощным черепом, потерял непосредственные афферентные (центростремительные) и эфферентные (центробежные) связи с мозгом и превратился в железу внутренней секреции. Так случилось у всех млекопитающих, за исключением неполнозубых (муравьедов, ленивцев), панцирных (броненосцев) и китообразных (китов, дельфинов), у которых эпифиз попросту исчез.

Развивается шишковидная железа в виде эпителиального дивертикула верхней части межуточного мозга, позади сосудистого сплетения, на втором месяце эмбриональной жизни. В дальнейшем стенки дивертикула утолщаются и из эпендимальной выстилки образуются две доли - в начале передняя, затем задняя. Между долями прорастают сосуды. Постепенно междолевая бухта суживается (от неё остаётся только recessus pinealis), доли сближаются и сливаются в единый орган. Паренхима передней доли образуется из клеток передней выстилки эпифизарной бухты, задней - из секреторной эпендимы задней стенки бухты.

1.2 Строение.

Эпифиз представляет собой вырост крыши III желудочка мозга. Он покрыт соединительнотканной капсулой, от которой внутрь отходят тяжи, разделяющие орган на доли. Размеры железы: до 12 мм в длину, 3-8 мм в ширину и 4 мм в толщину. Величина и вес меняются с возрастом. Масса эпифиза у взрослого человека составляет примерно 120 мг. Артерии шишковидной железы отходят от сосудистого сплетения III желудочка. Особенностью сосудов эпифиза является, отсутствие тесных контактов между эндотелиальными клетками, в силу чего гематоэнцефалический барьер в этом органе оказывается несостоятельным.

Большинство нервов эпифиза представлено волокнами клеток верхних шейных симпатических ганглиев.

Маленький вырост мозга, скрытый под большими полушариями, за свой внешний вид получил название шишковидной железы. Тело в виде сосновой шишки изображалось когда-то в тех местах папирусов, где говорилось о вхождении душ покойных в судный зал Осириса. Весьма архаичное значение шишки (а ведь "шишки" бывают важными) - символ вечной жизни, а также восстановления здоровья.

1.3 Гистология.

Гистологически различают паренхиму и соединительнотканную строму. Гистологическое строение эпифиза новорожденных отличается от его строения у взрослого. Ядра клеток имеют обычно овальную форму, резко контурированны. Хроматиновые зерна расположены преимущественно по периферии ядра. Строма состоит из коллегановых, эластичных и аргирофильных волокон и клеточных элементов.

Эпифиз окружён мягкой мозговой оболочкой, к которой непосредственно прилежит. Мягкая мозговая оболочка формирует капсулу. Капсула и отходящие от неё трабекулы содержат трабекулярные сосуды и постганглионарные синаптические волокна. Капсула и прослойки соединительной ткани построены из рыхлой волокнистой соединительной ткани образуют строму железы и разделяют её паренхиму на дольки. Исследователи указывают на несколько типов строения стромы; целлюллрный, ретикулярный, альвеолярный. Соединительная ткань становится более развитой в старческом возрасте, образует прослойки, по которым ветвятся кровеносные сосуды.

Паренхима эпифиза состоит ли плотно прилегающих одна к другой клеток. Паренхима эпифиза выглядит довольно гомогенизированной при малом увеличении. Небольшое количество сосудов пронизывают железу. Гистологически паренхима шишковидной железы имеет санцитальное строение и состоит из пинеальных и глиальных клеток. Кроме того имеются преваскулярные фагоциты.

В эпифизе находят два типа клеток: пинеалоциты (около 95% клеток, большие, светлые клетки) и астроциты (глиальные клетки, тёмные, овальные ядра). На большом увеличении видно три типа ядер. Маленькие тёмные ядра принадлежат астроцитам. Пинеалоциты имеют большие, светлые ядра, окруженные небольшим количеством светлой цитоплазмы. Большинство ядер -это ядра пинеалоцитов. Эндотелиальные клетки ассоциированы с сосудам. Пинеалоциты и астроциты имеют длинные отростки.

Клетки эпифиза - пинеалоциты обнаруживаются во всех дольках, располагаются преимущественно в центре, это секретирующие клетки. Они имеют большое овальное пузыревидное с крупными ядрышками ядро. От тела пинеалоцита отходят длинные отростки, ветвящиеся наподобиедендритов, которые переплетаются с отростками глиальных клеток. Отростки, булавовидно расширяясь, направляются к капиллярам и контактируют с ними. Многочисленные длинные отростки пинеалоцитов заканчиваются расширениями на капиллярах и среди клеток эпендимы. В концевых отделах части отростков присутствуют непонятного назначения структуры - плотные трубчатые элементы, окружённые т.е. синоптическими сфероидами. В цитоплазме этих булавовидных расширений содержаться осмиофильные гранулы, вакуоли и митохондрии. Они содержат большие везикулы, дольчатые ядра с впячиваниями цитоплазмы. Пинеалоциты лучше всего демонстрируются при импрегнации серебром. Среди пинеалоцитов различают светлые пинеалоциты (endochrinocytis lucidus), характеризующеся светлой гомогенной цитоплазмой и темные пинеалоциты меньшего размера с ацидофильным (а иногда базофильными) включениями в цитоплазме. обе названные формы являются не самостоятельными разновидностями, а представляют собой клетки, находящиеся в различных функциональных состояниях, или клетки, подвергающиеся возростным изменениям. В цитоплазме пинеалоцитов обнаруживаются многочисленные митохондрии, хорошо развитый комплект Гольджи, лизосомы, пузырьки агранулярной эндоплазматической стеи, рибосомы и полисомы. Пинеальные клетки, большие, светлые с крупными ядрами, многоугольной формы.Величина и форма пинеальных клеток меняется с возрастом и отчасти связаны с полом. К 10-15 годам в жизни в них появляется пигмент (липохром).

пинеалоциты располгаются группами; различают светлые (менее активные) и тёмные (более активные) пинеалоциты. Светлые и тёмные пинеалоциты, представляют разные функциональные состояния одной клетки.

пинеалоциты образуют аксо-вазальные синапсы с сосудми, поэтому выделяемые ими гормон попадают в кровоток

пинеалоциты синтехируют серотонин и мелатонин, возможно и другие белковые гормоны

эпифиз находится вне гематоэнцефалического барьера, так как пинеалоцитыимеют прямые связи с капиллярами (аксо-вазальные синапсы)

Морфологические проявления секреции шишковидной железы: ядерные пары бледно-базофильные обраования внутри ядер пинеальных клеток, вакуолизация их цитоплазмы, базофильные или оксифильные капли колоида в клетках тканевой коллоид) и в сосудах тиа венул (внутрисосудистый коллоид). Секреториальная активность в эпифизе стимулируется светом и темнотой.

Между секреторными клетками и фенистрированными капиллярами располагаются глиальные клетки. Глиальные клетки преобладают на периферии долек. Их отростки направляются к междольковым соединительнотканным перегородкам, образуя своего рода краевую кайму дольки. Гиальные - мелкие с компактой цитоплазмой, гиперхроными ядрами, многочисленными отростками Глиальные клетки являются астроглией. Они же - интерстициальные клетки - напоминают астроциты (Они не отличаются от астроцитов нервной ткани, содержат скопления глиальных филаментов, располагаются периваскулярно), имеют многочисленные ветвящиеся отростки, округлое плотное ядро, элементы гранулярной эндоплазматической сети и структуры цитоскелета: микротрубочки, промежуточные филамены и множество микрофиламетнтов.

1.4 Физиология

Достоверных морфологических признаков, свидетельствующих о секреторной функции, нет. Однако дольчатость и тесные контакты паренхиматозных клеток с соединительнотканными и нейроглиальными элементами позволяют судить о железистой структуре эпифиза. Изучение ультраструктуры клеток также показывает способность пинеалоцитов к выделению секреторного продукта. Кроме того, в цитоплазме пинеалоцитов обнаружены плотные пузырьки (dens core vesicles) диаметром 30-50нм, свидетельствующие о секреторном процессе. В эндотелии капилляров эпифиза найдены норы диаметром 25 - 4нм. Капилляры с такой ультраструктурой обнаружены в гипофизе, щитовидной железе, паращитовидных и поджелудочной железах, т. е. в типичных органах внутренней секреции. По мнению Wolfe и А. М. Хелимского, поры в эндотелии капилляров являются ещё одним признаком, указывающим на его секреторную функцию. Исследования последних лет установили, что эпифиз - метаболически активный орган. В его ткани обнаруживаются биогенные амины и ферменты, катализирующие процессы синтеза и инактивации этих соединении. Установлено, что в эпифизе происходит интенсивный обмен липидов, белков, фосфора и нуклеиновых кислот. Изучены три физиологически активных вещества, обнаруженных в эпифизе:

серотонин,

мелатонин,

норадреналин.

Есть немало данных и об аптигипоталамическом факторе, который связывает эпиталамо-эпифизарный комплекс с гипоталамо - гипофизарной системой. Так, например, в нем вырабатываются:

аргинин-вазотоцин (стимулирует секрецию пролактина);

эпифиз-гормон, или фактор «Милку»;

эпиталамин -суммарный пептидный комплекс и др.

В эпифизе обнаружены пептидные гормоны и биогенные амины, что позволяет отнести его клетки (пинеалоциты) к клеткам АПУД-системы. Не исключено, что в эпифизе могут также синтезироваться и накапливаться и другие гормональные соединения. Эпифиз участвует в регуляции процессов протекающих в организме циклически (например овариально-менструального цикла), деятельность эпифиза связывают с функцией поддержания биоритма (смена сна и бодрствования). Эпифиз - звено реализации биологических ритмов ритмов, в т.ч. околосуточных.

Пинеалоциты продуцируют мелатонин, производное серотонина, который подавляет гонадотропную секрецию и препятствует раннему половому созреванию. Разрушение этой железы, ее недоразвитие или удаление эпифиза у инфантильных животных в эксперименте имеют следствием наступление преждевременного полового созревания.

Ингибирующее влияние эпифиза на половые функции обусловливается несколькими факторами: пинеалоциты вырабатывают серотонин, который в них же превращается в мелатонин. Этот нейроамин, ослабляет или угнетает секрецию гонадолиберина гипоталамусом и гонадотропинов передней доли гипофиза. В то же время пинеалоциты продуцируют ряд белковых гормонов и в их числе антигонадотропин, ослабляющий секрецию лютропна передней доли гипофиза. Наряду с антигонадотропином пинеалоциты образуют другой белковый гормон, повышающий уровень калия в крови, следовательно, участвующий в регуляции минеарльного обмена. Число регуляторных пепидов продуцируемых пинеалоцитами, приближается к 40. Из них наиболее важны аргинин - вазотоцин, тиролиберин, люлиберин и даже тиротропин.

Эпифиз моделирует активность гипофиза, панкреатических островков, паращитовидных желез, надпочечников, половых желез и щитовидной железы. Влияние эпифиза на эндокринную систему носит в основном ингибиторный характер. Доказано действие его гормонов на систему гипоталамус-гипофиз-гонады. Мелатонин угнетает секрецию гонадотропинов как на уровне секреции либеринов гипоталамуса, так и на уровне аденогипофиза. Мелатонин определяет ритмичность гонадотропных эффектов, в том числе продолжительность менструального цикла у женщин.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12


ИНТЕРЕСНОЕ



© 2009 Все права защищены.