реферат бесплатно, курсовые работы
 

Аллельные варианты генов-кандидатов подверженности туберкулезу у русского населения Западной Сибири

Ген, кодирующий интерлейкин-12? (IL12В) также можно рассматривать в качестве кандидата при развитии туберкулезной инфекции, так как продукт данного гена играет ключевую роль в клеточном иммунном ответе [Тотолян А.А., Фрейдлин И.С., 2000]. Brightbill H. D. и соавторы (1999) продемонстрировали, что бактериальные лиганды (липопротеины) стимулируют выработку IL-12 макрофагами человека посредством активации Toll-like рецепторов на поверхности макрофага. Интерлейкин -12 связывается с 1 и 2 комплексом рецептора к IL-12 на поверхности Т-хелперов и других клеток-киллеров. В свою очередь, Т-хелперы продуцируют IFN-, который связывается с R1/R2 комплексом рецептора к IFN- на поверхности макрофагов и активирует их. Активированные макрофаги устремляются к месту нахождения микобактерий и активно их поглощают [Rook G. A. W. et al., 1985]. Таким образом, гибель микобактерий внутри макрофага осуществляется в результате сложных, опосредованных цитокинами, взаимодействий лимфоцитов и фагоцитов.

Интерлейкин 12 имеет 2 цепи, массой 35 kD (р35), кодируемая IL12А и массой 40 kD (р40), кодируемая IL12В. Тогда как IL12р40 главным образом взаимодействует с рецептором IL121 на поверхности Т-хелпера, IL12р35 в первую очередь сцепляется с IL122. Используя иммунопреципитацию, Oppmann B. и соавторы (2000) определили, что IL12В и р19 формируют растворимый комплекс, который они назвали IL23. Анализ установил, что IL23, подобно IL12, связывается с рецептором IL121. Не так давно были выявлены цитокины IL18 и IL29 имеющие сходство в функции с IL12 и IL23.

Ген NKSF2 (от англ. Natural Killer Cell Stimulatory Factor 2 - альтернативное название IL12) был картирован в дистальной области длинного плеча 5 хромосомы [Warrington J.A. et al., 1992]. В дальнейшем при помощи ПЦР анализа ДНК клеток гибридов был определен участок на хромосоме 5q31-33, где локализован IL12В [Sieburth D. et al., 1992]. J. A Warrington. и U Bengtsson. (1994) используя методы физического картирования, определили порядок расположения и относительное расстояние между 12 генами в 5q31-33 регионе. Ген IL12В был одним из них.

Группа исследователей картировала ген IL12в на 11 хромосоме мыши [Noben-Trauth N. et al., 1996]. Используя модель животного, были получены экспериментальные данные о роли гена IL12В в защите от туберкулезной инфекции. Элиминация функции IL12в у "нокаутированных" мышей (IL12р40-/-) при условии их инфицирования вирулентным штаммом М. tuberculosis приводила к распространенной туберкулезной инфекции и гибели животного. Однако мыши с генотипом IL12р35-/- не проявляли повышенной чувствительности к туберкулезу. Данное наблюдение наводит на мысль о значительной роли субъединицы р40 интерлейкина-12 в развитии резистентности к туберкулезу [Cooper A. M. et al., 2002].

Генетический дефицит IL12 или IL12R приводит к частичной или полной недостаточности выработки IFN-. Как правило, вакцина BCG и непатогенные микобактерии не вызывают у человека заболевания, однако известны случаи, когда они приводили к развитию тяжелой распространенной инфекции. Так было описано несколько пациентов с генетическим дефектом выработки IL12р40 и IL12р70 (комплекс судъединиц р40 и р70), большинство из которых страдали от диссеминированной инфекции М. bovis BCG. Недавно был обнаружен мононуклеотидный полиморфизм гена IL12В в 3`-UTR, обусловленный заменой А на С [Cervino A.C.L. et al., 2000]. Эта информация дает возможность оценить роль изменчивости гена IL12В в формировании полигенной подверженности к туберкулезу.

Если рассмотреть патогенез туберкулеза, возникает множество привлекательных кандидатов на роль "причинного" гена. Одним из таких генов, предположительно влияющих на исход отношений между человеком и микобактерией, является ген рецептора к витамину Д (VDR) [Uitterlinden A.G. et al., 2004]. Витамин Д - это группа родственных стероидов, одним из важнейших среди которых является так называемый Д3 (холекальциферол). Главный эффект активированного витамина Д3 (1,25(ОН)2Д3) или кальцитриола - стимуляция активной адсорбции кальция и фосфата из кишечника. К тому же кальцитриол оказывает влияние на клетки крови - модулирует пролиферацию и дифференциацию лимфоцитов, а также способствует конверсии циркулирующих моноцитов в макрофаги [Rigby W. F., 1988; Bellamy R., Hill A. V. S., 1998].

Активизированные макрофаги в свою очередь также способны к образованию кальцитриола. При туберкулезе этот локально продуцируемый кальцитриол может активизировать "проглатывание" и элиминацию МБТ макрофагами и минимизировать тканевую деструкцию [Davies P.D.O., 1985; Cadranel J. et al., 1988]. Исследования in vitro показали, что метаболиты витамина Д могут усиливать способность моноцитов человека ограничивать размножение внутриклеточно расположенных микобактерий туберкулеза. В то время как добавление одного рекомбинантного человеческого IFN- к пулированным моноцитам человека не оказывало влияния на их туберкулостатическую активность, введение в данную систему дополнительно кальцитриола приводило к полной остановке роста микобактерий [Rook G.A.W. et al., 1986; Denis M., 1991].

Все перечисленные эффекты холекальциферола осуществляются посредством специальных рецепторов, которые присутствуют во многих клетках и органах, в том числе в лимфоцитах периферической крови и моноцитах [Griffin M.D. et al., 2003]. Такая широкая распространенность рецепторов к витамину Д говорит о том, что данный стероид и его метаболиты регулируют деятельность многих систем организма.

Локализация гена кодирующего рецептор к витамину Д определена у человека на хромосоме 12q12-q14 [Labuda M., 1991]. Известны его полиморфные варианты, наиболее часто из которых исследуются три полиморфизма: F/f, T/t, B/b. Обозначение и название этих полиморфных маркеров произошло от первых букв рестриктаз, используемых для их детекции в ПДРФ-анализе (FokI, TagI, BsmI).

Результаты исследования, проведенного в Западной Африке (Гамбия) методом случай - контроль, выявили статистически значимую ассоциацию tt генотипа VDR гена с резистентностью к легочному туберкулезу [Bellamy R., 2000]. Подобная работа была проведена в Китае, результаты которой показали наличие ассоциации ff генотипа VDR гена с подверженностью к ТБ [Liu W. et al., 2004].

Однако в популяции Перу статистически значимой ассоциации различных полиморфизмов гена VDR с туберкулезом найдено не было [Roth D. E. еt al., 2004]. В другом исследовании было показано, что большую роль в предрасположенности к ТБ играют гаплотипы гена VDR [Bornman L. et al., 2004]. В Лондоне была проведена работа, в результате которой исследователи определили наличие связи между дефицитом холекальциферола в организме человека и активным туберкулезом. Наряду с этим, авторы продемонстрировали отрицательное влияние комбинации генотипов ТТ и Tt, а так же генотипа ff с недостатком витамина Д на резистентность к ТБ [Wilkinson R.J. et al., 2000].

В другом исследовании было показано, что генотип tt VDR гена ассоциирован с подверженностью к легочному туберкулезу у женщин, а, в свою очередь, ТТ генотип - с резистентностью к ТБ у женщин [Selvaraj P. et al., 2000]. Таким образом, витамин Д, действуя через рецепторы и модулируя функцию макрофагов, может повышать противотуберкулезную защиту человека. Данное утверждение отчасти объясняет тот факт, что заболеваемость туберкулезом выше в течение холодных сезонов года, когда кожный синтез кальцитриола от экспозиции солнца понижен и серологический уровень витамина Д более низкий [Chan T.Y., 2000].

Однако известно, что действие продукта экспрессии гена рецептора витамина D оказывает умеренное влияние на полную чувствительность к туберкулезу [Hill A.V.S., 2001]. К тому же, роль кальцитриола в антибактериальном иммунитете не однозначна, поскольку он наряду с активизацией макрофагов проявляет такие эффекты, как угнетение пролиферации лимфоцитов, снижение продукции иммуноглобулина и синтеза цитокинов [Bellamy R., Hill A.V.S., 1998; Wilkinson R. J. et al., 2000].

В целом, можно отметить, что в настоящее время имеется достаточно разрозненная информация о генетических основах подверженности к туберкулезу, а так же, видимо, общее количество генов, в той или иной мере влияющих на развитие этого инфекционного заболевания, гораздо выше. Таким образом, поиск новых генов-кандидатов туберкулеза, а так же изучение полиморфизма известных генов-кандидатов в популяциях различного этнического состава и их вклада в общую подверженность к заболеванию представляется на сегодняшний день важной задачей, решение которой позволит определить новые подходы к более эффективному лечению и профилактике ТБ.

2. Материал и методы исследования

2.1 Обследованные группы населения

Настоящее исследование включало три аспекта: анализ популяционной распространенности полиморфизма генов NRAMP1, VDR, IL1B, IL1RN и IL12В, оценку их патогенетической значимости в отношении туберкулеза, а также влияние исследуемых генов на патогенетически важные параметры заболевания. В соответствии с этим, первую часть работы выполнили на материале популяционной выборки здоровых жителей г. Томска (140 человек). Вторая и третья часть исследования проведена на материале выборки больных туберкулезом (304 человека) и их семей (42 семьи, 109 человек), живущих в г. Томске и Томской области.

Работа выполнена на базе ГОУ ВПО Сибирский государственный медицинский университет Росздрава и ГУ НИИ медицинской генетики ТНЦ СО РАМН. Набор материала для исследования осуществлялся в Областной Томской клинической туберкулезной больнице, Детском легочно-туберкулезном отделении Железнодорожной больницы, Областной детской туберкулезной больнице, а также Областном противотуберкулезном диспансере, в соответствии с этическими нормами с обязательным получением согласия испытуемых.

2.1.1 Характеристика контрольной выборки

В качестве контрольной группы использовалась популяционная выборка, сформированная для настоящего исследования на основе ДНК-банка ГУ НИИ медицинской генетики ТНЦ СО РАМН. Все лица, вошедшие в эту группу, были русскими. Основным критерием отбора образцов было отсутствие родства между индивидами. В данную выборку вошли индивиды никогда не болевшие туберкулезом по анамнестическим данным (140 человек), средний возраст которых составил 61,819,4 лет. Частично ее составили индивиды (118 человек) не родственные между собой и не имеющие по результатам клинического и параклинического обследования легочной патологии. Остальная часть контрольной группы (22 человека) включала пациентов, которым первоначально ошибочно был выставлен диагноз туберкулеза, но затем при более детальном обследовании данное заболевание было исключено. Таким образом, этих индивидов можно считать здоровыми от ТБ.

2.1.2 Характеристика выборки больных туберкулезом

Исследованная выборка больных туберкулезом была сформирована из индивидов, не родственных между собой. Выборка была однородной как по расовой принадлежности, так и по этническому происхождению, средний возраст составил 30,615,4 года. Все пациенты были русскими; женщин - 99 (32,6%), средний возраст которых составил 26,3 14,6 года, мужчин -205 (67,4%), средний возраст - 32,8 15,4 лет.

Диагноз туберкулеза легких устанавливался на основании данных микроскопии мокроты с обязательным рентгенологическим исследованием легких для определения формы заболевания и распространенности специфического процесса (общепринятые методы).

Обследованные пациенты имели следующие клинические формы туберкулеза: у 43 человек был диагностирован первичный туберкулез (у 35 - туберкулез внутригрудных лимфоузлов, у 3 - первичный туберкулезный комплекс, у 2 - плеврит туберкулезной этиологии первичного периода, у 2 - гематогенно-диссеминированный туберкулез легких), 150 пациентам был поставлен диагноз инфильтративного туберкулеза легких, 65 - диссеминированный туберкулез легких, 27 пациентам - очаговый туберкулез, у пятерых обследованных индивидов развилась казеозная пневмония, у 4 - фиброзно-кавернозный туберкулез легких, такому же количеству больных был выставлен диагноз туберкуломы легких, 3 пациентам - туберкулез почек, 2 - туберкулез бронха, 1 - плеврит туберкулезной этиологии.

2.1.3 Характеристика семейной выборки пробандов, больных туберкулезом

Исследованная семейная выборка была зарегистрирована по пробандам - больным туберкулезом, находившихся на лечении в противотуберкулезных учреждениях г. Томска в период с 2000 по 2004 г. Всего было обследовано 42 семьи (109 человек), в том числе 25, зарегистрированных по пробандам - детям в возрасте от 1 года до 15 лет. Семнадцать семей было выбрано по взрослым пробандам в возрасте от 17 до 48 лет (табл. 3).

Таблица 3 Структура семейного материала выборки изученной по полиморфным ДНК-маркерам генов NRAMP1, VDR, IL1B, IL12B, IL1RN

Выборка

Количество детей в семье

Всего

1

2

3

4

5

Полные семьи (изучены оба родителя и дети)

19(57)

0

0

0

1(7)

20(64)

Неполные семьи (изучен один родитель и дети)

16(32)

1(3)

0

0

0

17(35)

Нет данных о родителях

0

5(10)

0

0

0

5(10)

Примечание. В скобках указано количество индивидов.

Часть пробандов-детей составили мальчики (n=10), а девочек было в 1,5 раза больше (n=15). Средний возраст пробандов-детей разного пола достоверно не различался (7,2 года у мальчиков и 7,5 лет у девочек). Среди взрослых пробандов было 7 женщин (средний возраст - 19,8 лет) и 10 мужчин (средний возраст - 23,9 лет). Всем пробандам был поставлен диагноз туберкулеза, причем первичный и вторичный генез заболевания встречался с одинаковой частотой. Среди обследованных родственников пробандов первой степени родства было 28 лиц мужского пола, из них 8 человек болели туберкулезом, и 39 -женского, из них с туберкулезом 14.

2.2 Методы исследования

2.2.1 Клинико-лабораторные методы исследования

Клинико - эпидемиологический анализ больных туберкулезом включал: возраст начала заболевания, социальную категорию, вредные привычки (курение, злоупотребление алкоголем, употребление наркотиков), сопутствующую патологию, наличие контакта с туберкулезным больным, а также данные о туберкулезе у родственников больного. Анализу подвергались выраженность клинических проявлений (жалобы, объективный статус больного), результаты лабораторных и инструментальных методов исследования (микроскопия и посев мокроты на МБТ, чувствительность к противотуберкулезным препаратам, рентгенологическое исследование легких, общий анализ крови) на момент начала заболевания.

Для решения задачи по оптимизации и стандартизации сбора информации о больном ТБ была разработана специальная карта "Унифицированный носитель информации", содержащая блоки, охватывающие сведения о жалобах больного, эпидемиологическом анамнезе, анамнезе заболевания, объективном статусе, результатах лабораторного и инструментального обследования. В дальнейшем на основании сведений из этих карт была создана электронная база данных в формате Microsoft Excel.

2.2.2 Молекулярно - генетические методы анализа полиморфизма генов

Всего было изучено 9 полиморфных вариантов пяти генов - кандидатов подверженности туберкулезу. Исследовали 4 полиморфных варианта гена NRAMP1: 469+14G/C (INT4) - трансверсия гуанина на цитозин в 4 интроне, С274Т - консервативная замена в 3 экзоне, 1465-85 G/A - транзиция в 13 интроне и D543N - неконсервативная замена цитозина на аденин в 15 экзоне; два полиморфизма VDR гена: B/b, F/f; полиморфный вариант IL1B гена в 5 экзоне +3953А1/А2; VNTR полиморфизм гена IL1RN, расположенный во 2 интроне. Также выборки генотипировали по полиморфизму гена IL12В, обусловленному трансверсией аденина на цитозин в 3`-UTR области (табл. 4).

Для генотипирования индивидов по указанным полиморфизмам использовали образцы тотальной ДНК, выделенной из цельной венозной крови по стандартной неэнзиматической методике [Маниатис Т. и др., 1984; Lahiri D. et al., 1992]. Выделенную ДНК замораживали и хранили при температуре -20 С до проведения эксперимента. Генотипирование осуществляли с помощью полимеразной цепной реакции (ПЦР), используя структуру праймеров и параметры температурных циклов, описанных в литературе (табл.5).

Смесь для ПЦР содержала 0,5-2,0 мкл специфической пары праймеров с концентрацией 1 о.е./мл, 1,2-1,8 мкл 10 буфера для амплификации с концентрацией MgCl2 0,5-2,0 mM, 0,5-1,0 е. а. Taq ДНК-полимеразы ("Сибэнзим", "Медиген", Новосибирск) и 100-200 нг геномной ДНК. Смесь помещали в 0,5 мл пробирки типа "Эппендорф", наслаивали сверху минеральное масло для предотвращения испарения и амплифицировали в автоматических минициклерах "MJ Rеsearch" (США) и "БИС 108" (Россия-Новосибирск).

Программа амплификации включала предварительную денатурацию при 94С в течении 5 минут, с последующими 30-35 циклами отжига при температуре 60С (1мин.), элонгации цепи при 72С (40 сек.) и денатурации при 94С (40 сек.). Программу завершала финальная элонгация при 72С в течение 3 минут. Амплификат подвергали гидролизу соответствующей рестриктазой (табл.5) при оптимальной для фермента температуре в течении 12-24 ч. Рестрикционная смесь включала 5-7 мкл амплификата, 1,0-1,2 мкл 10 буфера для рестрикции, поставляемого фирмой - производителем ("Сибэнзим", Новосибирск), и 1-5 единиц активности фермента (в зависимости от эффективности его работы). Продукты рестрикции фракционировали в 3% агарозном геле при напряжении 120 В в течении 30 минут. Фрагменты ДНК окрашивали бромистым этидием и визуализировали в ультрафиолетовом свете.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12


ИНТЕРЕСНОЕ



© 2009 Все права защищены.