реферат бесплатно, курсовые работы
 

Легирование полупроводниковых материалов

Легирование полупроводниковых материалов

27

РЕФЕРАТ

по дисциплине: «Материаловедение»

на тему:

«Легирование полупроводниковых материалов»

Ростов-на-Дону

2010 г.

Содержание

1. Легирование выращенных кристаллов

2. Легирование объемных кристаллов из жидкой фазы

3. Методы выравнивания состава вдоль кристалла

3.1 Пассивные методы выравнивания состава

3.2 Активные методы выравнивания состава кристаллов

3.3 Механическая подпитка расплава

3.4. Изменение условий выращивания

4. Растворимость примесей

4.1 Взаимодействие примесей, связанное с электронно-дырочным равновесием

4.2 Взаимодействие между примесными ионами, приводящее к образованию нейтральных пар, устойчивых при низких температурах

4.3 Взаимодействие между примесными ионами, приводящее к образованию комплексов, устойчивых в широком интервале температур

Список литературы

1. Легирования выращенных кристаллов

Для изготовления многих полупроводниковых приборов необходим легированный материал. Возможны следующие способы легирования: 1) легирование уже выращенных кристаллов; 2) легирование кристаллов в процессе выращивания из жидкой фазы; 3) легирование кристаллов в процессе выращивания из газовой фазы.

Легирование выращенных кристаллов осуществляется методом диффузии примеси из внешней газовой, жидкой или твердой фаз, методом радиационного легирования и методом ионной имплантации. Метод диффузии в технологии производства объемных легированных материалов не получил распространения из-за малых скоростей диффузии в кристаллах. Тем не менее сами процессы диффузии играют большую роль в технологии получения и обработки полупроводниковых материалов и создании приборов на их основе.

Суть же радиационного (или трансмутационного) метода легирования выращенных кристаллов сводится к следующему. При облучении кристаллов полупроводников и диэлектриков ядерными частицами (нейтронами, протонами, г-квантами и др.) в результате протекания ядерных реакций может происходить превращение части атомов основного вещества в атомы других химических элементов, которые отсутствовали ранее в веществе. Например, при облучении Si медленными нейтронами образуется нестабильный изотоп 31Si, который, распадаясь с периодом полураспада 2.6 часа, превращается в стабильный изотоп 31P. Эти явления находят все более широкое применение для однородного легирования выращенных кристаллов. Неоднородность удельного сопротивления при радиационном легировании не превышает 1% на глубине 50 мм. Это значительно превосходит степень однородности легирования кристаллов другими методами. В настоящее время наибольшее практическое применение при радиационном легировании получило использование тепловых нейтронов.

Ионной имплантацией называют процесс внедрения в кристалл ионизированных атомов с энергией, достаточной для проникновения в его приповерхностные области. В настоящее время в электронной промышленности ионная имплантация наиболее широко применяется для ионного легирования кремния при изготовлении полупроводниковых приборов. Энергия легирующих ионов (бора, фосфора или мышьяка) обычно составляет 3-500 кэВ, что достаточно для их имплантации в приповерхностную область кремниевой подложки на глубину 10-1000 нм. Глубина залегания имплантированной примеси, которая пропорциональна энергии ионов, может быть выбрана исходя из требований конкретного применения имплантированной структуры. Основным преимуществом технологии ионной имплантации является возможность точного управления количеством внедренных атомов примеси. Нужную концентрацию легирующей примеси (в кремнии в диапазоне 1014-1021 см?3) получают после отжига мишени. Кроме того, можно легко управлять профилем распределения внедренных ионов по глубине подложки. Процесс ионной имплантации, проводимый в вакууме, относится к категории.чистых и сухих. процессов.

Одним из недостатков ионной имплантации и метода радиационного легирования является одновременное с легированием образование в облучаемых кристаллах радиационных нарушений кристаллической решетки, что существенно изменяет электрофизические свойства материала. Поэтому необходимой стадией процесса при получении ионно-легированных и радиационно-легированных кристаллов является термообработка (отжиг) материала после облучения. Отжиг ионно-имплантированных слоев проводится для активирования имплантированных атомов, уменьшения дефектов кристаллической структуры, образующихся при ионной имплантации и радиационном легировании, и в конечном счете, для создания области с заданным законом распределения легирующей примеси и определенной геометрией. Другими недостатками данного метода легирования являются стоимость облучения и необходимость соблюдения мер радиационной безопасности.

Тем не менее ионная имплантация и радиационное легирование кристаллов сейчас -- важные и быстро развивающиеся области технологии полупроводников. Так как ионная имплантация обеспечивает более точный контроль общей дозы легирующей примеси в диапазоне 1011-1016 см2, там, где это возможно, ею заменяют процессы диффузионного легирования. Очень интенсивно ионная имплантация используется для формирования сверхбольших интегральных схем. Метод радиационного легирования используется для получения кремния, необходимого для производства силовых приборов, где в качестве главного требования выступает высокая однородность распределения примесей в кристалле.

Метод радиационного легирования также находит все большее применение и для легирования других полупроводниковых материалов. Так, им осуществляют легирование Ge галлием и мышьяком, InSb оловом, GaAs германием и селеном и т. д.

2. Легирование объемных кристаллов из жидкой фазы

Рассмотрим особенности легирования кристаллов в процессе их выращивания из жидкой фазы. Широко применяемым методом получения легированных монокристаллов полупроводников является выращивание их из расплава, к которому добавлена нужная примесь.

Общие принципы такого легирования заключаются в следующем. Навеска примеси pi, подлежащая введению в расплав или жидкую зону для получения в твердом кристалле концентрации Ni, рассчитывается по формуле, определяющей коэффициент разделения примеси.

K0 = CS/CL = NiMiVL/NApi,

pi = NiMiVL/K0NA, (1)

где Mi -- атомный вес примесного элемента, NA -- число Авогадро, VL -- объем расплава.

При выборе примесей для легирования необходимо учитывать величину коэффициента разделения и ее изменение при изменении условий выращивания. Эти факторы являются чрезвычайно важными для получения монокристаллов с равномерным распределением примесей из-за принципиальной однократности процесса легирования и невозможности исправления ошибок в дозировании примеси.

Пусть, для определенности, K0 < 1. Тогда если скорость роста кристалла V больше, чем скорость выравнивания состава в жидкой фазе, то из-за оттеснения примеси из твердой фазы в жидкую и замедленности диффузионных процессов установления равновесия в жидкой фазе концентрация примеси в расплаве у границы раздела будет возрастать.

Накопление избытка примеси приведет к образованию перед движущимся фронтом кристаллизации диффузионного слоя д, из которого примесь путем диффузии переходит в объем расплава. Если K0 > 1, то вблизи поверхности роста ощущается недостаток примеси. Таким образом, от равновесного коэффициента разделения K0 мы переходим к эффективному K и учитываем влияние условий выращивания на процессы легирования:

K(f,D, д) = K0/[K0 + (1 ? K0) exp(?Vд/D)], (2)

где D -- коэффициент диффузии примеси в расплаве

В некоторых случаях, если характер перемешивания расплава задан, определение значения д возможно аналитически. Так, если при получении легированных кристаллов методом Чохральского перемешивание расплава осуществляется вращением кристалла и тигля вокруг своих осей во встречных направлениях с угловыми скоростями щк и щт, то значение д при невысоких скоростях роста V может быть определено по формуле

д = AD1/3н1/6(щк + щт)?1/2, (3)

где A -- постоянная, принимающая значение от 1.3 до 1.6, а н -- кинематическая вязкость расплава.

Зависимость K от V показана на рис.1 для двух скоростей вращения и трех значений равновесного коэффициента разделения K0. Видно, что только при скоростях V < 4 · 10?3 см/с можно говорить о совпадении K и K0. Из рисунка также видно, сколь важно вращение расплава и (или) кристалла для выравнивания концентрации примеси в расплаве.

Особенно это важно в условиях зонной плавки: без перемешивания расплава д может достигать размеров зоны. При д = 1 см K и K0 становятся сопоставимы по величине только при V < 10?4 см/с. Именно поэтому скорости выращивания кристаллов в методе зонной плавки значительно меньше, чем при вытягивании кристалла из расплава.

При выборе примеси чрезвычайно важным является учет ее чистоты, так как попадание в растущий кристалл вместе с легирующей примесью неконтролируемых сопутствующих примесей даже в очень малых количествах может приводить к существенному ухудшению параметров выращиваемых кристаллов (например, существенно снижать время жизни неосновных носителей заряда). Поэтому перед легированием оценивают требуемую чистоту легирующего элемента с учетом особенностей используемого метода легирования и допустимого содержания в легируемом кристалле посторонних примесей.

Рис. 1. Зависимость K от скорости кристаллизации V при разных скоростях вращения расплава и кристалла.

3. Методы выравнивания состава вдоль кристалла

Из рассмотренного материала можно сделать вывод, что существует несколько факторов, вызывающих появление неоднородностей состава в растущем кристалле. Неоднородности по причинам их возникновения можно разделить на две группы: сегрегационные и технологические.

Сегрегационные (или как их часто называют фундаментальные) связаны с закономерными изменениями состава растущего кристалла, обусловленными основными законами фазовых превращений в многокомпонентных системах. Эти закономерные неоднородности охватывают весь объем выращенного кристалла.

Технологические неоднородности имеют незакономерный характер. Они связаны с нарушениями стабильности условий роста кристаллов и охватывают небольшие объемы кристалла. Ясно, что технологические неоднородности могут быть устранены усовершенствованиями технологической аппаратуры для выращивания монокристаллов полупроводников и подбором оптимальных условий роста. Подобные способы уже рассматривались в предыдущей главе. В тоже время сегрегационные неоднородности таким путем устранены быть не могут. Для борьбы с ними необходимо разрабатывать специальные методы.

Методы выравнивания сегрегационных неоднородностей состава кристалла делятся на две группы: пассивные и активные методы. В первом случае монокристаллы с заданной однородностью распределения примеси получают без внесения каких-либо изменений в кристаллизационный процесс, то есть используются части кристалла с приблизительно равномерным распределением примеси. Под активными методами подразумеваются такие, которые позволяют активно влиять на ход процесса легирования во время роста, то есть по существу, позволяют программировать процесс изменения состава.

Эффективность метода выравнивания состава оценивают величиной, называемой выходом процесса или выходом годного материала. Выходом принято называть отношение части количества вещества с необходимыми для дальнейшего использования свойствами к общему его количеству, подвергнутому технологической обработке. В литературе также часто используется такое понятие, как теоретический выход годного материала. Имея аналитическое выражение для распределения состава в кристалле, выращиваемом каким-либо методом, можно рассчитать значение теоретического выхода для этого процесса. Поскольку теоретический расчет учитывает только сегрегационные неоднородности состава, то значение теоретического выхода будет характеризовать максимальный предел, выше которого нельзя увеличить реальный выход годного материала.

3.1 Пассивные методы выравнивания состава

Однородные кристаллы полупроводников проще всего получить, используя без всяких изменений обычные кристаллизационные процессы: нормальную направленную кристаллизацию и зонную плавку. В этом случае используют приблизительно однородно легированную часть кристалла. Анализ кривых распределения примесей в этих процессах показывает, что наиболее равномерно легированная часть кристалла примыкает к одному из его концов, поэтому целесообразно для дальнейшей работы использовать именно эти части.

При выращивании легированных кристаллов методом нормальной направленной кристаллизации состав исходного расплава обычно задают так, чтобы требуемая концентрация примеси оказалась в начале слитка.

Оценка значения расчетного выхода с приемлемым (±10%) разбросом состава по длине слитка при выращивании легированных кристаллов методом нормальной направленной кристаллизации показала низкую эффективность этого метода для получения однородного материала (при K = 0.1 теоретический выход равен 10.5%). Однако, благодаря своей простоте этот метод иногда применяется для получения легированных монокристаллов методом Чохральского.

Рассмотрим теперь возможности использования приблизительно равномерно легированной части кристаллов, выращиваемых методом зонной плавки. Теоретический выход процесса в этом случае, как показывают оценки, зависит от распределения примеси в исходном материале. Наиболее распространенным в данной технологии является в среднем равномерное исходное распределение примеси.

Анализ теоретического выхода процесса зонной плавки при этих условиях показал, что выход тем больше, чем коэффициент распределения ближе к 1; он возрастает с увеличением приведенной длины кристалла A = L/l, где L -- длина кристалла, l -- длина зоны, и в пределе стремиться к (A ? 1)/A. Выход в этом случае может быть сделан достаточно близким к 100% для однократного прохода расплавленной зоны через равномерный в среднем по составу образец. Таким образом, метод зонной плавки может удовлетворить большинству практических требований при получении однородных кристаллов, если только приведенная длина слитка достаточно велика.

Эффективным способом повышения теоретического выхода при выращивании кристаллов методом зонной плавки является выравнивание существенно неоднородного распределения примесей в начальной части слитка. Для этого в начальной части кристалла длиной в одну зону создается средняя концентрация примеси в K раз меньшая, чем в остальной части кристалла. Такой метод создания исходного распределения примеси получил название целевой загрузки. Для примесей с K < 1 и с равномерным в среднем начальным распределением по объему кристалла необходимое распределение проще всего создается легированием зоны в начальной части образца. После расплавления зоны в нее вводится примесь в таком количестве, что при движении зоны вдоль образца она с самого начала имеет постоянный состав: в нее через границу плавления входит ровно столько примеси, сколько уходит через границу кристаллизации. Вследствие этого состав выращиваемого кристалла постоянен по всей длине за исключением его конца, где процесс идет по закону нормальной направленной кристаллизации.

Также на практике часто используется метод прохождения легирующей зоны через чистый исходный образец для получения равномерно легированных кристаллов. Суть метода сводится к следующему. В расплавленную в начале чистого кристалла зону вводят легирующую примесь. Для примеси с K << 1 при кристаллизации расплава из зоны уходит настолько мало примеси, что состав жидкой фазы практически не меняется и, таким образом, получается однородно легированный материал.

Поэтому этот метод наиболее эффективен для примесей с K << 1.

3.2 Активные методы выравнивания состава кристаллов

Эти методы служат для повышения выхода материала с равномерным распределением примеси. Их отличительной особенностью является то, что в течение всего кристаллизационного процесса в него вводятся определенные изменения. Активные методы выравнивания состава подразделяются на две основные группы.

Первая -- включает методы, в которых с целью поддержания концентрации примеси в расплаве в течение всего процесса выращивания монокристалла постоянно проводят подпитку расплава либо нелегированной твердой, жидкой или паровой фазой (если K < 1), либо фазой, содержащей легирующую примесь (если K > 1). В этих методах в процессе кристаллизации должны соблюдаться следующие условия: CL = const, K = const, V = const, CS = KCL = const. Система процесса выращивания однородного кристалла в наиболее общем виде включает в себя следующие элементы: растущий кристалл, расплав и поступающую в него подпитывающую массу.

Вторая -- методы, в которых изменяются сами условия роста монокристаллов. Процессы выращивания однородных кристаллов этими методами протекают при следующих условиях: CL ? const; K ? const; f ? const; CS = KнCнL = KкCкL = const, где н -- начало, а к -- конец. При этом программа изменения кристаллизационного процесса обеспечивает постоянство скорости захвата примеси в течение всего процесса выращивания монокристалла.

Помимо этих двух групп методов возможны и их комбинации. Рассмотрим сначала первую группу методов более подробно.

3.3 Механическая подпитка расплава

Механическая подпитка расплава твердой фазой

Возможны два способа:

Идея первого способа состоит в опускании в расплав подпитывающего стержня (рис. 2). Процессом подпитки можно управлять, меняя площадь поперечного сечения подпитывающего стержня, его состав и механическую скорость его подачи. При необходимости в расплав может одновременно вводиться несколько стержней. Для того, чтобы получить математическое выражение, описывающее процесс выравнивания состава в данном методе, необходимо составить уравнение баланса примеси в расплаве и приравнять изменение концентрации примеси нулю. Из этого уравнения для любого варианта механической подпитки расплава опускающимся стержнем легко найти условия, обеспечивающие получение однородного кристалла. Так, для наиболее интересного с практической точки зрения режима получение легированных кристаллов решение уравнения сводится к отысканию либо нужной концентрации подпитывающего стержня при заданных остальных параметрах, либо к отысканию его площади поперечного сечения. В частности, если сечения вытягиваемого кристалла и стержня подпитки равны, и равны их плотности, то состав подпитывающего стержня должен быть равен составу растущего кристалла. Этот способ выравнивания состава позволяет получать однородные монокристаллы с высоким выходом и большим диапазоном уровней легирования. Он используется и для выращивания монокристаллов твердых растворов, например, в таких системах как Ge-Si, Bi-Sb, InAs-GaAs и т.д.

Рис. 2. Схема метода механической подпитки расплава твердой фазой: 1 -- питающий кристалл; 2 -- нагреватель для подогрева питающего кристалла; 3 -- тигель; 4 -- выращиваемый кристалл; 5 -- расплав; 6 -- основной нагреватель.

2. Второй способ подпитки -- метод расплавленного слоя (рис. 3). В этом случае слиток подпитывающего материала помещают в нижней части кристалла, выращивание которого ведут с вершины подпитывающего слитка, подплавляемого специальным нагревателем. Рост кристалла в этом случае сопровождается синхронным перемещением подпитывающего слитка вверх.

Рис. 3. Схема метода подпитки расплава твердой фазой (метод расплавленного слоя): 1 -- питающий кристалл; 2 -- нагреватель; 3 -- выращиваемый кристалл, 4 -- расплав.

Страницы: 1, 2


ИНТЕРЕСНОЕ



© 2009 Все права защищены.