реферат бесплатно, курсовые работы
 

Исследование возможности применения искусственных нейронных сетей для автоматического управления процессом металлизации

Для обеспечения требуемой точности и обобщающей способности можно использовать нейронную сеть с двумя скрытыми слоями, размерность которых меньше, чем при использовании трехслойной сети. Однако нейронные сети, которые имеют несколько скрытых слоев, обучаются значительно медленнее.

Исходя из проведенных в данном разделе рассуждений, можно сделать следующие выводы:

нейронная сеть с одним скрытым слоем позволяет осуществить любое отображение входных сигналов в выходные;

число нейронных элементов в промежуточном слое должно быть меньше числа тренировочных образцов;

мощность нейронной сети можно увеличивать как за счет числа нейронов в слое, так и за счет числа слоев. Если на нейронную сеть накладываются ограничения, и она не может решить поставленную задачу, то необходимо увеличивать число скрытых слоев нейронной сети;

случайная инициализация весовых коэффициентов нейронной сети должна проходить в достаточно узком диапазоне значений.

4.3.2 Алгоритмы обучения

Существуют три парадигмы обучения: "с учителем", "без учителя" (самообучение) и смешанная. В первом случае нейронная сеть располагает правильными ответами (выходами сети) на каждый входной пример. Веса настраиваются так, чтобы сеть производила ответы как можно более близкие к известным правильным ответам. Усиленный вариант обучения с учителем предполагает, что известна только критическая оценка правильности выхода нейронной сети, но не сами правильные значения выхода. Обучение без учителя не требует знания правильных ответов на каждый пример обучающей выборки. В этом случае раскрывается внутренняя структура данных или корреляции между образцами в системе данных, что позволяет распределить образцы по категориям. При смешанном обучении часть весов определяется посредством обучения с учителем, в то время как остальная получается с помощью самообучения.

Известны четыре основных типа правил обучения: коррекция по ошибке, машина Больцмана, правило Хебба и обучение методом соревнования.

Правило коррекции по ошибке

При обучении с учителем для каждого входного примера задан желаемый выход d. Реальный выход сети y может не совпадать с желаемым. Принцип коррекции по ошибке при обучении состоит в использовании сигнала (d-y) для модификации весов, обеспечивающей постепенное уменьшение ошибки. Чтобы реализовать эту процедуру, нам нужно изменять каждый вес на величину, пропорциональную скорости, с которой изменяется ошибка по мере изменения веса. Эта величина (называемая производной ошибки по весу и обозначаемая EW) вычисляется не просто. Один из способов вычисления EW заключается в том, чтобы изменить вес на очень маленькую величину и посмотреть, как изменится ошибка. Однако, этот метод не эффективен, поскольку требует отдельных вариаций для каждого из многих весов. Известны различные модификации этого алгоритма обучения (например, на базе одного из градиентных методов - метод обратного распространения ошибки).

Обучение Больцмана

Представляет собой стохастическое правило обучения, которое следует из информационных теоретических и термодинамических принципов. Целью обучения Больцмана является такая настройка весовых коэффициентов, при которой состояния видимых нейронов удовлетворяют желаемому распределению вероятностей. Обучение Больцмана может рассматриваться как специальный случай коррекции по ошибке, в котором под ошибкой понимается расхождение корреляций состояний в двух режимах.

Правило Хебба

Самым старым обучающим правилом является постулат обучения Хебба. Хебб опирался на следующие нейрофизиологические наблюдения: если нейроны с обеих сторон синапса активизируются одновременно и регулярно, то сила синаптической связи возрастает. Важной особенностью этого правила является то, что изменение синаптического веса зависит только от активности нейронов, которые связаны данным синапсом. Это существенно упрощает цепи обучения.

Обучение методом соревнования

В отличие от обучения Хебба, в котором множество выходных нейронов могут возбуждаться одновременно, при соревновательном обучении выходные нейроны соревнуются между собой за активизацию. Это явление известно как правило "победитель берет все". Подобное обучение имеет место в биологических нейронных сетях. Обучение посредством соревнования позволяет кластеризовать входные данные: подобные примеры группируются сетью в соответствии с корреляциями и представляются одним элементом. При обучении модифицируются только веса "победившего" нейрона. Эффект этого правила достигается за счет такого изменения сохраненного в сети образца (вектора весов связей победившего нейрона), при котором он становится чуть ближе к входному примеру.

В таблице 2 представлены различные алгоритмы обучения и связанные с ними архитектуры сетей (список не является исчерпывающим). В последней колонке перечислены задачи, для которых может быть применен каждый алгоритм. Каждый алгоритм обучения ориентирован на сеть определенной архитектуры и предназначен для ограниченного класса задач. Кроме рассмотренных, следует упомянуть некоторые другие алгоритмы: Adaline и Madaline , линейный дискриминантный анализ , проекции Саммона, анализ главных компонентов .

4.3.2 Алгоритм обратного распространения ошибки

Математические основы алгоритма

Примерно в 1974 году Поль Дж. Вербос изобрел значительно более эффективную процедуру для вычисления EW, когда работал над своей докторской диссертацией в Гарвардском университете. Процедура, известная теперь как алгоритм обратного распространения (back propagation algorithm), стала одним из наиболее важных инструментов в обучении нейронных сетей.

Алгоритм обратного распространением проще всего понять, когда все элементы сети линейны. Алгоритм вычисляет каждую EW, сначала вычисляя EA - скорость, с которой изменяется ошибка при изменении уровня активности элемента. Для выходных элементов EA является просто разностью между действительным и желаемым выходом. Чтобы вычислить EA для скрытого элемента в слое, непосредственно предшествующем выходному слою, мы сначала идентифицируем все веса между этим скрытым элементом и выходными элементами, с которыми соединен данный скрытый элемент. Затем мы умножаем эти веса на величины EA для этих выходных элементов и складываем полученные произведения. Эта сумма и равна EA для данного скрытого элемента. Вычислив EA для всех элементов скрытого слоя, прилегающего к выходному, мы можем аналогичным образом рассчитать EA и для других слоев, перемещаясь в направлении, обратном тому направлению, в котором активность нейронов распространяется по сети. Отсюда и название алгоритма обратного прослеживания (или обратного распространения). После того как значение EA для элемента вычислено, подсчитать EW для каждой входной связи элемента уже несложно. Величина EW является произведением EA и активности во входной цепи.

Для нелинейных элементов алгоритм обратного распространения включает дополнительный шаг. Перед перемещением в обратном направлении EA необходимо преобразовать в EI - скорость, с которой изменяется ошибка по мере изменения суммарного входа элемента.

Чтобы реализовать этот алгоритм, мы сначала должны дать математическое описание нейронной сети. Рассмотрим нейронную сеть, состоящую из четырех слоев (рис. 5.17). Обозначим слои нейронных элементов от входа к выходу соответственно через . Тогда выходное значение -го нейрона последнего слоя:

где - взвешенная сумма -го нейрона выходного слоя; - выходное значение -го нейрона предпоследнего слоя; - весовой коэффициент -го нейрона выходного слоя; - порог -го нейрона выходного слоя.

Аналогичным образом выходное значение -го нейрона предпоследнего слоя:

Соответственно для -го слоя:

Алгоритм обратного распространения ошибки минимизирует среднеквадратичную ошибку нейронной сети. Для этого с целью настройки синаптических связей используется метод градиентного спуска в пространстве весовых коэффициентов и порогов нейронной сети. Согласно методу градиентного спуска изменение весовых коэффициентов и порогов нейронной сети происходит по следующему правилу:

где - среднеквадратичная ошибка нейронной сети для одного набора значений входов.

Эта среднеквадратичная ошибка определяется по формуле:

где - эталонное выходное значение -го нейрона.

Ошибка -го нейрона выходного слоя:

Ошибка некоторого -го нейрона произвольного слоя сети зависит от ошибки нейронных элементов следующего слоя и определяется по формуле:

где и - выходное значение -го и -го нейрона соответственно; - взвешенная сумма -го нейрона.

Принимая во внимание:

получаем, что для любого скрытого слоя i ошибка i-го нейронного элемента определяется рекурсивным образом через ошибки нейронов следующего слоя j по следующей формуле:

где m - число нейронов следующего слоя по отношению к слою i.

Аналогичным образом доказывается, что производные среднеквадратичной ошибки по весовым коэффициентам и порогам нейронных элементов для любых двух слоев i и j определяются по формулам:

Из последних формул очевидно, что для минимизации среднеквадратичной ошибки сети весовые коэффициенты и пороги нейронных элементов должны изменяться с течением времени следующим образом:

где - скорость обучения.

Последние два выражения () и () определяют правило обучения многослойных нейронных сетей в общем виде, которое называют обобщенным дельта-правилом.

Недостатки алгоритма обратного распространения ошибки

Алгоритм обратного распространения ошибки, в основе которого лежит градиентный метод, создает ряд проблем при обучении многослойных нейронных сетей. К таким проблемам можно отнести следующие:

неизвестность выбора числа слоев и количества нейронных элементов в слое для многослойных сетей;

медленную сходимость градиентного метода с постоянным шагом обучения;

сложность выбора подходящей скорости обучения . Так, слишком малая скорость обучения увеличивает время обучения и приводит к скатыванию нейронной сети в локальный минимум. Большая скорость обучения может привести к пропуску глобального минимума и сделать процесс обучения расходящимся;

невозможность определения точек локального и глобального минимумов, так как градиентный метод их не различает;

влияние случайной инициализации весовых коэффициентов нейронной сети на поиск минимума функции среднеквадратичной ошибки.

Последний пункт отражает, что при разной инициализации синаптических связей могут получаться различные решения задачи. Это характеризует неустойчивость алгоритма обучения, когда нейронная сеть в одних случаях может обучаться до требуемой суммарной среднеквадратичной ошибки, а в других нет. То, что алгоритм обратного распространения ошибки не позволяет в общем случае достичь глобального минимума, не умаляет его достоинств, так как во многих практических задачах достаточно обучить нейронную сеть до требуемой среднеквадратичной ошибки. Является ли при этом найденный минимум локальным или глобальным, не имеет большого значения.

Адаптивный шаг обучения

Ранее отмечалось, что в стандартном алгоритме обратного распространения ошибки существует проблема выбора подходящего шага обучения, чтобы увеличить быстродействие и обеспечить сходимость алгоритма. Для выбора адаптивного шага обучения можно использовать метод наискорейшего спуска [4]. В соответствии с ним на каждой итерации обучения нейронной сети необходимо выбирать шаг обучения для каждого слоя таким, чтобы минимизировать среднеквадратичную ошибку сети:

где ; -- число нейронных элементов последнего слоя.

Выходное значение j-го нейрона зависит от функции активации нейронных элементов и в общем случае определяется следующим образом:

При этом весовые коэффициенты и пороги нейронной сети модифицируются, как:

Среднеквадратичная ошибка нейронной сети:

Тогда для нахождения (t) необходимо решить следующее уравнение:

Данное уравнение невозможно решить относительно (t) аналитическим путем. Поэтому в ряде работ для определения адаптивного шага обучения предлагается использовать методы линейного поиска [14]. Однако это связано со значительными вычислениями. Поэтому можно предложить приближенный метод нахождения скорости обучения (t). Он базируется на разложении функции активации нейронных элементов в ряд Тейлора.

Пусть выходное значение j-го нейрона последнего слоя нейронной сети

где -- выходное значение -го нейрона скрытого слоя.

Для определения взвешенной суммы -го нейрона в момент подставим в (111) выражения (222) и (333):

Обозначим:

Тогда можно представить в следующем виде:

Выходное значение j-го нейрона в момент времени t +1:

Разложим по формуле Тейлора и ограничимся первыми двумя членами:

Тогда

Так как

то (888) можно переписать в виде

Для обеспечения адаптивного шага обучения необходимо обеспечить:

Тогда

Откуда

Так как , то при данном обеспечивается минимум среднеквадратичной ошибки. Найдем выражение для . Для этого определим:

получим:

Исходя из принципа независимости слоев, предполагаем, что

получим приближенное выражение для вычисления адаптивного шага обучения различных слоев нейронной сети:

где -- ошибка -го нейронного элемента..

Следует отметить, что в приведенном выше выражении вычисляется отдельно для каждого слоя нейронной сети. Как показывают эксперименты, при использовании адаптивного шага обучения могут получаться слишком большие значения . Это может привести к десинхронизации процесса обучения, когда весовые коэффициенты резко изменяются в определенном направлении. В результате изменение среднеквадратичной ошибки с течением времени будет иметь колебательный характер. Поэтому рекомендуется ограничивать по абсолютному значению. Полученное выше выражение для адаптивного шага обучения позволяет значительно повысить скорость обучения нейронной сети и избежать выбора подходящего шага. Это является существенным преимуществом по сравнению со стандартным алгоритмом обратного распространения ошибки. Хотя при удачном выборе постоянного шага обучения данный алгоритм будет сходиться не быстрее, чем метод градиентного спуска.

5. ЭКОНОМИЧЕСКАЯ ЧАСТЬ

5.1 ВВЕДЕНИЕ

Экономическое планирование является нормой любой деятельности, направленной на получение прибыли. Исследования по использованию новых технологий в металлургии имеют экономические предпосылки. В связи с этим желательно предусмотреть в рамках исследовательской работы оценку экономической эффективности новых методов, которая могла бы служить в дальнейшем основанием для проектного решения по этой проблеме.

Как метод экономического планирования выберем составление бизнес-плана. Бизнес-план выступает как объективная оценка собственной деятельности предприятия и, в то же время, необходимый инструмент проектно - инвестиционных решений в соответствии с потребностями рынка. В нем характеризуются основные аспекты коммерческого предприятия, анализируются проблемы, с которыми оно столкнется, и определяются способы их решения. Следовательно, бизнес-план - одновременно поисковая, научно-исследовательская и проектная работа.

Цель бизнес-плана может быть разная, Например, получение кредита или привлечение инвестиций, определение стратегических и тактических ориентиров предприятия и др.

В зависимости от рыночной ситуации цели составления бизнес-плана могут быть различны. Вследствие этого бизнес-планы по объектам бизнеса можно классифицировать в соответствии со схемой (см. приложение 10). Бизнес-планы разрабатываются в различных модификациях в зависимости от назначения: по бизнес линиям (продукция, работы, услуги, технические решения), по предприятию в целом (новому или уже действующему). Бизнес-план может быть нацелен как на развитие предприятия, так и на его финансовое оздоровление. Также может планироваться деятельность всего предприятия или его отдельного подразделения.

Необходимо отметить, что различные экономисты выделяют несколько разные структуры бизнес-планов, однако, все они имеют приблизительно одинаковое строение. Такая структура представлена в приложении 12.

5.2 РАЗРАБОТКА БИЗНЕС-ПЛАНА

5.2.1 Концепция

Целью данного исследования является развитие производственного подразделения. Возможность решения может быть предоставлена внутренними ресурсами предприятия. Проект развития, в основе которого лежат выше проведённые исследования позволит:

снизить расход топлива и энергоносителей;

снизить себестоимость продукции;

повысить производительность и качество;

на много увеличить надёжность работы;

Для реализации проекта потребуются капитальные затраты в размере 3 648 600,00 руб., срок окупаемости которых составит 1,2 года и по истечение пяти лет даст планируемую прибыль 13 636 733,84.

5.2.2 Краткая информация о предприятии

Открытое Акционерное Общество Оскольский электрометаллургический комбинат (ОАО "ОЭМК") - это частное предприятие, вышестоящим органом которого является собрание акционеров.

Адрес: 309500, Белгородская обл., г. Старый Оскол - 15.

E-mail: oemk@oskolnet.ru

http://www.oemk.oskol.ru

5.2.3 Характеристика предприятия и продукции

ОЭМК являет собой интегрированное (с полным циклом) металлургическое предприятие, предназначенное для производства высококачественной металлопродукции из стали, выплавленной из металлизованных окатышей (с добавкой металлолома), производство которых, как и производство окисленных окатышей, входит в состав комбината.

Основные достоинства ОЭМК:

1. Принципиально новая технология производства металла, основанная на прямом получении железа из руды по способу "Мидрекс", позволяет исключить из состава комбината такие сильные источники загрязнения атмосферы, как аглофабрика, коксохимическое производство, доменный цех. Практически отсутствуют выбросы в атмосферу серы, фенолов, цианидов и других вредных веществ. Исключение из процесса жидких высоконагретых продуктов при восстановлении окисленных окатышей улучшает условия труда рабочих.

2. Применение металлизованных окатышей в качестве основного шихтового материала для производства стали позволяет получать металл нового уровня качества, особо чистый по содержанию вредных примесей и примесей цветных металлов (в два-три раза ниже, чем в металле, выплавленном традиционными методами). Это особенно важно в связи с возрастающим загрязнением металлолома. Среднее содержание остаточных элементов в стали, выплавленной из металлизованных окатышей, составляет в процентах: серы - 0,006; фосфора - 0,008; никеля - 0,05; меди - 0,06. Впервые регламентировано содержание остаточных цветных металлов в процентах: свинца - менее 0,003; цинка - менее 0,004; сурьмы - менее 0,003; олова - менее 0,01; висмута - менее 0,005.

3. Выплавка высококачественной стали из металлизованных окатышей в сверхмощных электродуговых печах с непрерывной разливкой металла в заготовки сечением 300х360 мм. Выплавка производится в электропечах вместимостью 150 т. с трансформатором мощностью 90 МВА. Для снижения вредных воздействий на окружающую среду электропечь заключена в шумоизолирующий кожух. Материалы по программе подаются в печь или ковш, окатыши и известь в процессе плавки загружаются непрерывно через отверстие в своде печи.

4. Применение системы гидротранспорта для поставки железорудного концентрата (пульпы). Исключены железнодорожный транспорт, парк вагонов, операции погрузки и разгрузки, потери металлов, ручной труд. Процесс бесшумен, легко поддается контролю, регулированию и автоматизации. Транспорт не зависит от природы.

5. Использование для межцеховых и внутрицеховых перевозок не железнодорожного транспорта, а конвейерных систем и специального автотранспорта. Это позволило более компактно расположить цехи, повысить гибкость управления их работой.

6. Использование при обезвоживании концентрата блочной системы фильтрации, при которой каждый фильтр обслуживает отдельный вакуумный насос, что повышает качество фильтрации и стабильность работы оборудования при повышении энерговооруженности процесса.

7. Эксплуатация электро-газовых подстанций на 330/110 и 110/10 кВ повышает надежность работы оборудования и сокращает площади для подстанций. Использование современного оборудования, сырья нового качества и прогрессивных технологических приемов производства и контроля качества (металлизованные окатыши, внепечная обработка жидкого металла, защита от вторичного окисления металла на МНЛЗ, автоматическое поддержание уровня металла в кристаллизаторах, использование шиберных затворов на промежуточных ковшах, водовоздушное вторичное охлаждение заготовок, регламентированное охлаждение литой заготовки, термообработка, обточка, установки неразрушающего контроля проката) позволяют гарантированно получать металлопродукцию заданного высокого качества.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9


ИНТЕРЕСНОЕ



© 2009 Все права защищены.