реферат бесплатно, курсовые работы
 

Исследование возможности применения искусственных нейронных сетей для автоматического управления процессом металлизации

По конструкции и принципу действия скруббер охлаждающего газа аналогичен скрубберу колошникового газа. В нем только нет разделительной стенки в насадке и второго циклонного каплеотделителя, поскольку поток очищенного охлаждающего газа подается на всасывание соответствующего компрессора без его разделения на две части.

1.2.5 Реформер

Корпус реформера представляет собой газоплотную сварную, стальную конструкцию длиной 41, шириной 11 и высотой 9 м, разделенную на 12 секций. Поскольку рабочая температура составляет 1100 ?С, стальная конструкция защищена огнеупорной футеровкой. В реформере имеется 288 реакционных труб, размещенных вертикально в четыре ряда по 72 трубы в каждом ряду так, что в одной секции располагаются 24 трубы, обогреваемые на длине 8 м. Отверстия для прохода через днище и свод корпуса реформера уплотнены.

Трубы реформера заполнены катализатором. Газ проходит через них снизу вверх. Смешанный газ, подогретый до 400 ?С, входит в трубы снизу, конвертированный газ выходит из верхних концов труб с температурой 900?С и поступает в футерованные коллекторные трубопроводы.

Реформер отапливается с помощью установленных с днища в пять рядов 120 главных горелок и 36 вспомогательных. Главные горелки работают на топливном газе - смеси колошникового газа с природным, и на воздухе, подогретом до 600 ?С. Во вспомогательных горелках сжигается природный газ холодным воздухом.

Катализатор, загружаемый в трубы реформера, состоит из материалоносителя (например, глинозема высокой чистоты) и активного компонента. В большинстве случаев в качестве катализатора для реакции конверсии применяется никель в различных концентрациях.

1.2.6 Рекуператор

В каждом модуле прямого восстановления имеются два рекуператора. По направлению потока дымовых газов в них расположены следующие конструктивные узлы: радиационный трубчатый рекуператор для подогрева воздуха (прямотоком дымового газа и воздуха), камера поворота дымового газа, двухходовой конвективный рекуператор для подогрева воздуха (перекрестно-противоточная схема), двухходовой конвективный рекуператор для подогрева смешанного газа (перекрестно-противоточная схема), двухгодовой конвективный рекуператор для подогрева природного газа (перекрестно-противоточная схема).

Эти узлы размещены в несущей стальной конструкции, покрытой герметичным стальным кожухом и опирающейся на бетонные фундаменты и опоры.

1.2.7 Свеча

Для модулей прямого восстановления 1 и 2 и для модулей 3 и 4 предусмотрено по одной свете. На свечу сбрасывают для дожигания газы в основном из предохранительных клапанов, скрубберов колошникового и охлаждающего газов, концевого холодильника технологического газа, холодильника конвертированного газа, фильтра природного газа (у модулей), а также с некоторых станций регулирования давления природного газа. Состав этих газов в соответствии с их происхождением различен. Для проектирования свечи были приняты за основу характеристики топливного газа.

1.3 МЕТАЛЛИЗАЦИЯ ЖЕЛЕЗА В ШАХТНОЙ ПЕЧИ

1.3.1 Краткое описание процесса "Мидрекс"

При восстановительном процессе "Мидрекс" (см. Приложение 5) оксид железа в форме окатышей или кусковой руды превращается в высокометаллизованный продукт, пригодный для производства электростали, например в дуговой печи [1,15,17]. Восстановительный процесс проводится в шахтной печи (см. Приложение 4), в которой горячий восстановительный газ реагирует в противотоке с рудой, опускающейся под действием силы тяжести. Процесс протекает при температуре ниже точки размягчения шихтовых материалов. В качестве восстановительного газа используются водород и монооксид углерода (СО), которые образуются из природного газа в газовом конверторе (реформере).

Здесь развиваются ,в основном, следующие химические реакции:

1) восстановление

Fe2O3 + 3H2 2Fe + 3H2O;

Fe2O3 + 3CO 2Fe + 3CO2;

2) образование карбида железа

3Fe + 2CO Fe3C + CO2 ;

3) конверсия

CH4 + H2O CO + 3H2 ;

CH4 + CO2 2CO + 2H2 ;

Горячий колошниковый газ, выходящий из верхней части шахты восстановительной печи, охлаждается и очищается в соответствующем скруббере и разделяется на два потока: технологический газ и топливный газ.

Технологический газ сжимается в компрессорах, смешивается с природным газом, очищенным от серы, подогревается в рекуператорах и конвертируется в реформере в присутствии никелевого катализатора, превращаясь в конвертированный газ. Конверсия представляет собой, в основном, расщепление природного газа при воздействии кислородсодержащих газов СО2 и Н2О на продукты распада Н2 и СО. При этом объем газа увеличивается на 30%. Избыточный газ, образовавшийся в результате увеличения объема - топливный колошниковый газ - смешивается с природным газом и сжигается в главных горелках реформера. Тепло от сжигания топливного газа покрывает значительную часть теплопотребления реформера. Недостающую часть тепла получают от сжигания некоторого количества природного газа.

Горячий металлизованный продукт, опускающийся из зоны восстановления, охлаждается в нижерасположенной зоне охлаждающим газом. Нагревшийся охлаждающий газ затем охлаждается и очищается в скруббере, сжимается в соответствующем компрессоре и снова подается в зону охлаждения. Металлизованный продукт выгружается при помощи маятникового питателя.

При альтернативном режиме работы (AFS) колошниковый газ после скруббера и последующего компримирования подается в зону охлаждения, где он охлаждает горячее губчатое железо. При прохождении через насыпной слой газ отдает содержащиеся в нем соединения серы охлажденному губчатому железу.

Все этапы описываемого процесса проходят под небольшим избыточным давлением. Сырье поступает в восстановительную печь через шлюз с динамическим газовым затвором, а готовый продукт выгружается из печи через другой аналогичный шлюз. Проникновение воздуха предотвращается тем, что в шлюзы с газовым затвором вдувается инертный газ под давлением, несколько превышающим давление в точках соединения шлюзов с печью, при этом не применяют никаких движущихся деталей.

Чтобы описать функционирование процесса, целесообразно разделить его энергоснабжение на пять оборотных циклов и систем. Имеются в виду следующие циклы и системы:

а) Цикл восстановительного газа: печь металлизации, скруббер колошникового газа, компрессоры и холодильник технологического газа, реформер, рекуператор и холодильник конвертированного газа после реформера.

б) Цикл охлаждающего газа: нижняя часть печи металлизации (зона охлаждения), скруббер и компрессор охлаждающего газа и каплеотделитель.

в) Система инертного газа: подача инертного газа в уплотнения при нормальной работе, подача продувочного газа и аварийная система подачи инертного газа.

г) Система водоснабжения: сгуститель, градирни, насосы и прочие вспомогательные устройства.

д) Система аспирации: отсасывающие зонты, трубопроводы запыленного воздуха и радиальный скруббер (промыватель).

Разумеется, во всех системах имеются трубопроводы, измерительные устройства и регуляторы, многочисленная арматура и вспомогательные устройства.

1.3.2 Цикл восстановительного газа

В печи металлизации протекают собственно процессы восстановления. Твердые материалы поступают сверху в реактор, работающий под давлением, и покидают его снизу, выходя из пространства с избыточным давлением в окружающую среду. Твердые материалы (окисленные окатыши) опускаются в печи под действием силы тяжести по мере того, как на нижнем конце печи они выгружаются (уже в виде металлизованного продукта) в заданном режиме при помощи специального устройства для выгрузки - так называемого маятникового питателя. Одновременно горячий восстановительный газ, вдуваемый через сопла примерно на середине высоты шахтной печи при температуре ~ 760 °С и абсолютном давлении ~ 0,2 МПа, движется навстречу потоку окатышей вверх, где и выходит из печи уже как колошниковый газ при температуре ~ 400°С и абсолютном давлении ~ 0,13 МПа. Для предотвращения выхода из печи горючих газов, находящихся под избыточным давлением, устройства для загрузки окисленных окатышей и выгрузки металлизованного продукта уплотнены при помощи так называемых газовых динамических затворов. В эти затворы вдувается инертный (затворный) газ под таким давлением, которое обеспечивает движение этого газа в труботечках загрузки и выгрузки только внутри печи, т.е. только вниз - на колошнике, где загружаются окисленные окатыши, и только вверх - на разгрузке, где выгружаются металлизованные окатыши. Затворный газ представляет собой отходящие из реформера обезвоженные продукты сгорания, содержание кислорода в которых поддерживается на уровне 0,5-1 %.

Время пребывания окатышей в зоне восстановления при проектной производительности модуля устанавливается таким, чтобы достигалась средняя степень металлизации в пределах 90-94 %.

Развитие различных реакций процесса металлизации - восстановления гематита до магнетита и далее до вюстита железа, и образования карбида железа, в принципе зависит от температуры восстановительного газа, его химического состава и времени пребывания газа и твердых материалов в восстановительной печи. Химический состав окисленных окатышей существенно влияет на кинетику восстановительных процессов.

Для управления восстановительным процессом используются в основном следующие взаимозависимости:

1. Повышение содержания СО2 в восстановительном газе снижает его восстановительную способность.

2. Повышение содержания СН4 в восстановительном газе охлаждает слой окатышей и повышает восстановительную способность газа при достаточно высокой температуре.

3. Увеличение отношения Н2/СО в восстановительном газе охлаждает слой окатышей.

Внизу зоны восстановления наряду с восстановлением происходит и науглероживание металлизованного продукта, в котором углерод появляется преимущественно в форме карбида железа. На содержание углерода можно повлиять следующими практическими мероприятиями:

изменением содержания метана в восстановительном газе путем добавки природного газа к охлажденной части конвертированного газа;

увеличением содержания метана в охлаждающем газе, с тем чтобы заданное количество CH4 поступало в переходную зону и из нее - в зону восстановления.

В нижней части печи металлизации (ниже переходной зоны и вплоть до нижнего динамического затвора) происходит охлаждение металлизованного продукта.

Горячий запыленный колошниковый газ входит в скруббер сверху через трубу Вентури, где при подаче большого количества воды происходит резкое охлаждение газа и одновременно смачивание частиц пыли. Над поверхностью промывочной воды конусной части скруббера газ совершает поворот на 180°, вследствие чего смоченные частицы пыли вместе с большей частью капелек охлаждающей воды отбрасываются силой инерции в воду. При дальнейшем движении газа вверх через насадку скруббера он охлаждается почти до температуры охлаждающей воды. Доля газа, необходимая для реформинга (технологический газ), выходит из скруббера насыщенной водяными парами при температуре ~ 55 °С. Избыточный газ (топливный газ) должен быть возможно более полно обезвожен, поэтому он орошается в насадке скруббера промывочной водой, имеющей возможно более низкую температуру. При длительной непрерывной работе температура топливного газа может достичь 30°С. Чтобы можно было получить различные температуры газа, промывочная насадка скруббера разделена промежуточной перегородкой на зону технологического газа и зону топливного газа.

Нагретая и загрязненная пылью вода из труб Вентури и с насадки скруббера поступает в конус скруббера и оттуда передается далее в систему грязной воды. Содержание пыли в чистом газе при нормальной чистой насадке скруббера составляет в среднем ~ 5 мг/м3. Потеря напора в скруббере для промывки колошникового газа равна ~10 кПа.

Компрессоры технологического газа обеспечивают циркуляцию технологического газа, причем суммарная потеря напора в этом цикле при полной нагрузке и равномерном ходе печи составляет 1214 кПа и для поддержания заданного избыточного давления давление на стороне всасывания компрессоров обычно составляет 12 кПа. Для процесса "Мидрекс" хорошо зарекомендовали себя выносливые и почти не нуждающиеся в обслуживании винтовые (двухроторные) компрессоры. Это обусловлено, в первую очередь, их характеристикой (такие компрессоры относятся к гидрообъемному типу, т.е. нагнетаемый объем почти не зависит от колебаний давления), а также их нечувствительностью к высокому и меняющемуся содержанию свободной воды во всасываемом газе и хлопьям пыли, которые иногда захватываются газом. Компрессоры работают с впрыскиванием воды, которая поглощает тепло, образующееся при сжатии, и предотвращает появление образований на роторе. Они снабжены электроприводами с постоянной частотой вращения, поэтому для регулирования расхода газа предусмотрена байпасная линия, через которую избыточное количество газа возвращается из цикла технологического газа обратно в скруббер колошникового газа.

В концевом холодильнике технологический газ с заданной точностью насыщается водяными парами благодаря орошению насадки, через которую газ проходит снизу вверх. Температура воды устанавливается в соответствии с температурой газа, измеренной после холодильника.

Для процесса "Мидрекс" характерно получение восстановительного газа в реформере [1]. Термокаталитическая конверсия протекает по реакциям:

CH4 + H2O CO + 3H2 ;

CH4 + CO2 2CO + 2H2 ;

При этом на катализаторе устанавливается равновесие реакции водяного газа:

CO + H2O = CO2 + H2;

Для процесса "Мидрекс" типично, что в качестве кислородоносителя для конверсии, кроме (сравнительно небольших количеств) водяного пара, используется в первую очередь диоксид углерода - составная часть колошникового газа. Смешанный газ (природный + технологический) перед процессом конверсии подогревается (в рекуператоре) до температуры ~ 400 °С и затем конвертируется на никелевом катализаторе с одновременным нагревом до ~ 900 °С. При этом происходит увеличение объема. В скруббере колошникового газа избыточный газ выделяется из цикла технологического газа и используется как топливный. Теплота его сгорания используется для покрытия потребности в тепле эндотермических реакций конверсии.

При паровой конверсии обычные катализаторы реакции расщепления природного газа отличаются высокой чувствительностью к сере, в то время как при процессе "Мидрекс" допустимы и более высокие содержания серы в смешанном газе. Если заданное предельное содержание серы (например, ~0,0014% в природном газе) превышается лишь эпизодически и незначительно, то временное отравление катализатора (проявляющееся в снижении производительности) является обратимым и устранится самопроизвольно, если содержание серы в циркулирующем газе спустя короткое время вновь снизится до нормального уровня.

Обычными источниками поступления серы являются железная руда и природный газ. При использовании обожженных окисленных окатышей сера, содержащаяся в руде, становится безвредной, что соответствует условиям. Для очистки природного газа от серы предусмотрена установка десульфурации, описание которой в работе не приводится.

Процесс конверсии протекает в вертикальных реакционных трубах реформера, заполненных катализатором, газ через которые течет снизу вверх. Трубы расположены в футерованном газоплотном, стальном корпусе. Система подовых горелок, расположенных между трубами реформера, обеспечивает теплом эндотермический процесс. В главных горелках сжигается часть потока колошникового газа, к которому добавляется небольшое количество свежего природного газа.

В дополнение к описанной выше главной системе горелок отопления реформера имеется независимая вспомогательная система работающих на природном газе горелок, расположенных тоже между рядами труб в днище реформера. Вспомогательная система горелок рассчитана, так, чтобы реформер (газовый конвертор) можно было нагреть без нагрузки до заданной рабочей температуры и поддерживать во время перерывов в работе на этом уровне.

Поскольку в дымовом газе реформера при его нормальной работе содержание кислорода получается низким, он может быть использован для получения инертного газа.

Горячий конвертированный газ, выходящий из 288 труб реформера при температуре ~ 900 °С, поступает в два газосборных футерованных коллектора.

В холодильнике конвертированного газа и непосредственно за ним температура и состав газа корректируются с таким расчетом, чтобы были точно выдержаны конкретные параметры процесса восстановления.

Из трубопровода конвертированного газа ответвляется часть потока и охлаждается в противоточном оросительном охладителе (при этом содержание воды в упомянутом газе снижается). Температура основного потока регулируется количеством охлажденного конвертированного газа, вводимым в основной поток. Кроме того, можно повысить содержание метана (CH4) в конвертированном газе, добавляя природный газ в его холодную часть. В трубопроводе восстановительного газа установлены датчики температуры и содержания метана.

В рекуператоре охлаждается дымовой газ реформера, нагревая воздух, подводимый к главным горелкам, смешанный и природный газ. Дымовой газ последовательно проходит через радиационную и конвективную зоны воздухоподогревателя, затем через конвективный подогреватель смешанного газа и, наконец, через конвективный подогреватель природного газа и при этом охлаждается.

Холодный воздух разделяется для его подогрева между радиационной и конвективной зонами воздухоподогревателя. В радиационной зоне дымовые газы и воздух движутся в прямотоке, а все конвективные зоны в рекуператоре работают по перекрестно-противоточному принципу.

Утилизация тепла дымового газа позволяет снизить общий расход тепла на процесс и увеличить производительность реформера, так как благодаря предварительному подогреву смешанного газа в рекуператоре участок нагрева в трубах реформера до начала конверсии получается более коротким.

Применена система с двумя параллельными рекуператорами, из которых дымовые газы отсасываются двухпоточным эксгаустером и сбрасывается в дымоход дымовой трубы.

Даже когда главные горелки реформера не работают, в воздухоподогреватель можно подавать воздух, благодаря чему предотвращается перегрев рекуператоров и эксгаустера. Нагретый воздух сбрасывается в дымовую трубу.

1.3.3 Цикл охлаждающего газа

В зоне охлаждения печи металлизации горячий металлизованный продукт (имеющий температуру ~ 760 °С) отдает физическое тепло охлаждающему газу, который входит в эту зону с температурой ~ 40 °С. Здесь теплопередача тоже идет в противотоке, так как охлаждающий газ движется сверху вниз из распределителя в отводящие каналы, расположенные поперек шахты навстречу движущимся сверху вниз окатышам. Для обеспечения равномерного хода печи предусмотрено разрыхление материалов в печи на трех уровнях зубьями питателя, постоянно движущегося взад и вперед. Три верхних постоянно действующих питателя выполнены водо-охлаждаемыми, а два средних и нижний работают без охлаждения.

Охлажденный металлизованный продукт выходит из печи металлизации через нижний динамический затвор и далее через маятниковый питатель. Как и на участке загрузки шихтовых материалов, в печь металлизации к нижнему динамическому затвору постоянно подводится инертный газ.

При помощи маятникового питателя можно управлять производительностью печи металлизации.

Горячий запыленный охлаждающий газ с температурой 400450 °С поступает через отводящие каналы в скруббер, который по конструкции в принципе аналогичен скрубберу колошникового газа, но не имеет разделения на два газовых потока. Чистый газ (имеющий остаточную запыленность не более чем ~ 10 мг/м3) поступает в компрессор охлаждающего газа (такого же винтового типа, как компрессор технологического газа), который компенсирует потерю напора в цикле охлаждающего газа, составляющую ~ 40 кПа. Перед входом в печь металлизации охлаждающий газ в циклонном каплеотделителе освобождается от капель воды и далее через соответствующий распределитель подводится в зону охлаждения.

Между зонами восстановления и охлаждения всегда происходит неизбежный небольшой газообмен. Условия этого газообмена определяются расходом затворного газа, постоянно подводимого через динамический затвор, и устанавливающимся соотношением давлений в циклах технологического и охлаждающего газов.

Целесообразно отметить, что переход углерода в металлизованный продукт зависит от температуры охлаждающего газа. По мере снижения этой температуры содержание углерода в металлизованных окатышах повышается.

1.3.4 Цикл инертного газа

Для динамических затворов печи металлизации и для других потребителей постоянно необходим инертный газ. Для этого в цехе металлизации предусмотрена одна установка инертного газа для двух модулей. Каждая установка имеет следующие три системы: подачи инертного газа для нормальной работы, подачи продувочного газа, аварийной подачи инертного газа.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9


ИНТЕРЕСНОЕ



© 2009 Все права защищены.