реферат бесплатно, курсовые работы
 

Автоматизация процесса селективной очистки масел

2.3.4 Осушка растворителя

В колонне К-9 осуществляется смешение паров растворителя с водным раствором. За счет теплоты конденсации паров испаряется вода и часть растворителя. В нижнюю часть колонны К-9, под вторую тарелку поступают пары растворителя с первой испарительной колонны К-5 с температурой 200 С.

Часть паров с верха колонны К-9 конденсируются в АВО-3,4, охлаждаются в теплообменнике водяного охлаждения и направляются в емкость обводненного растворителя Е-4.

Для поддержания температуры верха К-9 105-115 С подается орошение насосом Н-10 из Е-4.

Также орошение из Е-4 подается на верх К-5 насосом Н-11.

Балансовое количество водяных паров со следами растворителя с К-9 направляется под нижнюю тарелку абсорбера К-7.

С низа К-9 растворитель откачивается насосом Н-9 через АВО-1,2 в емкость Е-3.

3. Автоматизация процесса

Средства автоматизации позволяют осуществить мониторинг качества продукции на каждой стадии технологического процесса.

Установка селективной очистки масляных дистиллятов по ПБ 09-170-97 относится к третьей категории.

Нефтепродукты, перерабатываемые и получаемые на установке, являются пожароопасными.

Поэтому необходимо производить контроль всех технологических параметров, влияющих на безопасность проведения процесса. Этому способствуют средства контроля и автоматизации, применяемые в настоящее время на установке селективной очистки масел.

3.1 Выбор и обоснование параметров контроля, регулирования и сигнализации

В экстракционной колонне К - 1 регулируется температура, так как она влияет на качество рафината.

Регулируется расход сырья, поступающего в колонну и расход растворителя. От кратности растворителя к сырью зависит степень очистки масла, если она превысит заданную, то снизится выход масла, если кратность растворителя будет ниже заданной, то рафинат будет очищен не до конца.

Во всех остальных колонных аппаратах регулируется давление, так как от него будет зависеть степень извлечения из рафинатного и экстрактного растворов растворителя. По этой же причине регулируется температура верха и низа в колоннах.

В колоннах К-2, К-3, К-6, работающих под вакуумом предусмотрена сигнализация нижнего значения остаточного давления (0,01 МПа).

Уровень кубовой жидкости в колоннах регулируется путем изменения подачи сырья или изменения расхода кубовой жидкости. Уровень регулируется для того, чтобы предотвратить аварийные ситуации на установке. Если уровень будет слишком большой, то жидкость зальет тарелки и нарушится процесс массообмена, а если жидкости в кубе не останется, то может выйти из строя насос, откачивающий эту жидкость.

В печах контролируется расход подаваемого сырья, так как это определяет производительность установки. Также с помощью изменения расхода можно изменять давление сырья в печи. В печах регулируются температуры выхода сырья из печи, при достижении 300 С включается световая сигнализация. Температура регулируются путем подачи большего или меньшего количества топлива печи. Также контролируется температура над перевалами печей, т.е. равномерность распределения теплонапряженности топочного пространства печей.

Температуры потоков поддерживаются за счет изменения расходов теплоносителей в теплообменных аппаратах.

В емкостях регулируется уровень, для избежания перелива и выхода из строя откачивающих насосов.

3.2 Выбор и обоснование средств контроля, регулирования и сигнализации

Приборы для контроля и регулирования должны быть быстродействующими, надежными в работе и обеспечивать необходимую точность измерения. Необходимо учитывать свойства объектов регулирования и регуляторов, чтобы обеспечить устойчивость системы регулирования в процессе.

Для осуществления схем контроля и регулирования выбраны следующие приборы.

3.2.1 Датчики температуры

В качестве чувствительного элемента при измерении температур над перевалами печей применяются термоэлектрические термометры градуировки хромель-алюмель (ТХА), диапазон измерений ТХА: Т=50…1100 оС и градуировки хромель-капель (ТХК), диапазон измерения которых

Т= - 50…600 оС, при измерении температур по остальным позициям, что соответствует условиям технологического режима.

3.2.2 Датчики давления

В качестве датчиков давления используются термоэлектрические преобразователи типа Сапфир 22 МДИ - для измерения перепада давления и Сапфир 22 МДГ - для измерения давления столба жидкости, Сапфир-22 МДВ - для измерения разряжения.

3.2.3 Датчики расхода

В качестве датчиков расхода используются диафрагмы камерные типа ДК. Она рассчитана на перепад давлений от 0,6 до 10,0 МПа. Перепад давления преобразуется с помощью тензометрического преобразователя разности давлений Сапфир-22ДД в стандартный токовый сигнал, пропорциональный этому расходу.

3.2.4 Датчики уровня

В качестве датчиков уровня используются измерительные термоэлектрические преобразователи Сапфир-22 МДГ с унифицированным выходным сигналом.

3.2.5 Регулирующий контроллер

В качестве регулирующего контроллера используется Ремиконт Р-130 - это комплекс универсальных микропроцессорных технических средств широкого назначения, который может применяться при автоматизации самых разнообразных технологических процессов. Ремиконт Р-130 относится к классу малолокальных средств управления, рассчитанных на решение задач автоматического регулирования (от одного до четырех контуров) и логического управления (с 10-30 входами и выходами).

На базе Ремиконта Р-130 эффективно решаются как сравнительно простые, так и сложные задачи управления. Отличительной особенностью Ремиконта является то, что средства подключения к локальной сети исключительно дешевы и не снижают надежности контроллеров при выполнении основных функций управления. В состав Ремиконта Р-130 входят 3 вида моделей: регулирующая, логическая и непрерывно-дискретная.

3.2.6 Вторичный прибор

Дисплейная станция ДС-130 предназначена для работы с контроллерами типа Ремиконт Р-130 и представляет собой программно-технический комплекс, состоящий из ПЭВМ, совместимой с IBM/AT/XT, укомплектованной цветным дисплеем типа EGA, принтером, клавиатурой общего назначения и специальным пакетом программ.

3.2.7 Исполнительный механизм

Исполнительный механизм предназначен для непосредственного изменения количества вещества или энергии, подводимых к объекту регулирования или отводимых от него.

В качестве исполнительных механизмов применяются клапаны для агрессивных сред марки 25ч30нж, такой выбор обусловлен физико-химическими свойствами потоков.

3.2.8 Преобразователи промежуточные

- функциональный электропневматический преобразователь типа ЭПП-М; предназначен для преобразования сигнала токового сигнала в пневматический;

- измерительный преобразователь марки Ш 9322, который используется для преобразования сигнала термо-ЭДС в стандартный токовый сигнал Iвых=0…5 мА.

3.3 Описание схем контроля, регулирования и сигнализации

3.3.1 Регулирование температуры потока, выходящего из АВО-6

Температура потока воспринимается термоэлектрическим термометром типа ТХК-0193-02А (поз. 4-1), который преобразует температуру в термо-ЭДС. ТЭДС с помощью измерительного преобразователя типа Ш 9322 (поз. 4-2) преобразуется в стандартный токовый сигнал дистанционной пердачи. Токовый сигнал поступает на дисплейную станцию ДС-130 (поз.4-3) и регулирующий контроллер типа Р-130 (поз. 4-4), который вырабатывает командный сигнал. Этот сигнал через функциональный преобразователь типа ЭПП-М (поз. 4-5) в виде пневмосигнала поступает на исполнительный механизм типа 25ч30нж (поз. 4-6), установленный на линии подачи воздуха в аппарат.

Аналогичное регулирование по позициям 28, 34 и 16, 35, 46 с сигнализацией верхнего значения 300С (сигнальная лампа ЛС-4).

3.3.2 Контроль температуры низа К-2

Температура низа колонны воспринимается термоэлектрическим термометром типа ТХК-0193-02А (поз. 24-1), который преобразует температуру в термо-ЭДС. ТЭДС с помощью измерительного преобразователя типа Ш 9322 (поз. 24-2) преобразуется в стандартный токовый сигнал дистанционной пердачи. Токовый сигнал поступает на дисплейную станцию ДС-130 (поз. 24-3).

Аналогично контролируются температуры по позициям 3, 10, 15, 24, 29, 30, 32, 38, 41, 44, 48.

3.3.3 Регулирование и сигнализация давления в К-9

Давление в колонне с помощью тензометрического преобразователя типа Сапфир - 22 МДИ (поз. 27-1) преобразуются в стандартный токовый сигнал, который поступает на регулирующий контроллер типа Р-130 (поз. 27-3) и на дисплейную станцию типа ДС-130 (поз. 27-2). В регулирующем контроллере вырабатывается командный сигнал, который через функциональный преобразователь типа ЭПП-М (поз. 27-4) в виде пневматического сигнала поступает на исполнительный механизм типа 25ч30нж (поз. 27-5), который меняет расход паров с верха колонны. При значении давления 0,17 МПа сигнал с ДС-130 поступает на сигнальную лампу ЛС-4 (поз. 27-6).

Аналогичное регулирование - позиция 36 и по позициям 19, 21 (тензометрический преобразователь типа Сапфир - 22 МДВ, сигнализация нижнего значения 0,01 МПа).

3.3.4 Контроль и сигнализация разрежения в К-6

Давление в колонне с помощью тензометрического преобразователя типа Сапфир - 22 МДВ (поз. 40-1) преобразуются в стандартный токовый сигнал, который поступает на дисплейную станцию типа ДС-130 (поз. 27-2). При значении давления 0,01 МПа сигнал с ДС-130 поступает на сигнальную лампу ЛС-4 (поз. 40-3).

3.3.5 Регулирование уровня в емкости Е-5

Измерение уровня производится с помощью манометра типа Сапфир 22 МДГ (поз. 2-1), который воспринимает давление гидравлического столба жидкости. Токовый нормированный сигнал с манометра поступает на дисплейную станцию типа ДС-130 (поз. 2-2) и регулирующий контроллер Р-130 (поз. 2-3). В контроллер вырабатывается командный сигнал, который через функциональный преобразователь типа ЭПП-М (поз. 2-4) в виде пневмосигнала поступает на исполнительное устройство типа 25ч30нж (поз. 2-5), который меняет расход откачиваемой из емкости жидкости.

Аналогичное регулирование по позициям 9, 12, 18, 22, 25, 26, 37, 43.

По позициям 26, 37, 43 предусмотрена сигнализация нижнего значения.

3.3.6 Контроль и сигнализация уровня в К-5

Измерение уровня производится с помощью манометра типа Сапфир 22 МДГ (поз. 33-1), который воспринимает давление гидравлического столба жидкости. Токовый нормированный сигнал с манометра поступает на дисплейную станцию типа ДС-130 (поз. 33-2). При минимальном значении сигнал с ДС-130 поступает на сигнальную лампу ЛС-4 (поз. 33-3).

Аналогичный контроль поз. 31

3.3.7 Регулирование расхода сырья в колонну К-7

Параметр расхода с помощью преобразователя диафрагмы камерной типа ДКС (поз. 1-1) преобразуется в перепад давления, который воспринимается тензометрическим датчиком типа Сапфир 22МДД (поз. 1-2) и преобразуется в стандартный токовый сигнал. Сигнал поступает на дисплейную станцию типа ДС-130 (поз. 1-3) и регулирующий контроллер Р-130 (поз. 1-4). В контроллер вырабатывается командный сигнал Этот сигнал через функциональный преобразователь типа ЭПП-М (поз. 1-5) в виде пневмосигнала поступает на исполнительный механизм типа 25ч30нж (поз. 1- 6).

Аналогично регулирование 6, 20, 39, 42, 47.

3.3.8 Контроль расхода растворителя в колонну К-1

Параметр расхода с помощью преобразователя диафрагмы камерной типа ДКС (поз. 7-1) преобразуется в перепад давления, который воспринимается тензометрическим датчиком типа Сапфир 22МДД (поз. 7-2) и преобразуется в стандартный токовый сигнал. Сигнал поступает на дисплейную станцию типа ДС-130 (поз. 7-3).

Аналогично регулирование 5, 8, 13, 14, 17, 23, 45.

Спецификация средств автоматизации приведена в таблице 1.

Таблица 1 - Спецификация средств автоматизации

Позиция

Наименование и техническая характеристика среды

Наименование и техническая характеристика прибора

Марка прибора

Количество

Примечание

1

2

3

4

5

6

15-1, 48-1

Температура, оС

Т=900 оС;Р=0,3 Мпа

нефтепродукты

Термоэлектрический термометр; градуировка ХА; предел измерений

0… 1100 оС;

класс точности 0,5

ТХА-0193-02Т

2

По месту

3-1, 4-1, 10-1, 11-1-1, 11-1-2, 16-1, 24-1, 28-1, 29-1, 30-1, 32-1, 33'-1, 34-1, 35-1, 41-1, 44-1

Температура, оС

Т=40…300 оС

нефтепродукты

Термоэлектрический термометр; градуировка ХК;

предел измерений 0…600 оС

класс точности 0,5

ТХК-0193-2А

16

3-2, 4-2, 10-2, 11-2-1, 11-2-2, 11-4, 15-2, 16-2, 24-2, 28-2, 29-2, 30-2, 32-2, 33'-2, 34-2, 35-2, 41-2, 44-2, 48-2

Температура

Измерительный преобразователь;

класс точности 0,5;

выходной сигнал

Iвых=0…5 мА

Ш 9322

18

27-1, 36-1

Давление

до 0,17 МПа

Тензометрический преобразователь;

класс точности 0,5;

верхний предел измерений 2,5 МПа;

выходной сигнал

Iвых=0…5 мА

Сапфир 22МДИ

2

19-1, 21-1, 40-1

Разряжение

не менее 0,01 МПа

Тензометрический

преобразователь

класс точности 0,5;

выходной сигнал Iвых=0…5 мА

Сапфир 22 МДВ

3

2-1, 9-1, 12-1, 18-1,

22-1, 25-1, 26-1, 31-1,

33-1, 37-1, 43-1

Уровень

40 кПа

Тензометрический преобразова-тель класс точности 0,5;

Рст=4 МПа

верхний предел измерений

60 кПа

Сапфир 22 МДГ

11

1-1, 5-1, 6-1, 7-1, 8-1,

13-1, 14-1, 17-1, 20-1, 23-1, 39-1, 42-1, 45-1, 47-1

Расход

0,9 МПа

Первичный преобразователь диафрагма камерная; класс точности 0,5;

Ду=100 мм;

Ру=10 МПа

ДКС-10-100-А1Б1

ГОСТ 8.563.1-97

14

1-2, 5-2, 6-2, 7-2, 8-2,

13-2, 14-2, 17-2, 20-2,

23-2, 39-2, 42-2, 45-2, 47-2

Расход

Тензометрический преобразова-тель класс точности 0,5;

Рст=16 МПа

верхний предел измерений 1,6 МПа

Iвых=0,5 мА

Сапфир 22 МДД

14

1-3, 2-2, 3-3, 4-3, 5-3,

6-3, 7-3, 8-3, 9-2, 10-3,

11-3, 12-2, 13-3, 14-3, 15-3, 16-3, 17-3, 18-2, 19-2, 20-3, 21-2, 22-2, 23-3, 24-3, 25-2, 26-2, 27-2, 28-3, 29-3, 30-3 31-2, 32-2, 33-2, 34-3, 47-3, 35-3, 36-2, 37-2, 38-3, 39-3, 40-2, 41-3, 42-3, 43-2, 44-3, 45-3, 46-3, 48-3

Уровень, температура,

давление, расход

Дисплейная станция

число колец до 16;

контроллеров

в кольце до 15,

скорость обмена информацией

ДС-130

2

На щите

1-4, 2-3, 4-4, 6-4, 9-3, 11-4, 12-3, 16-4, 18-3, 19-3, 20-4, 21-3, 25-3, 26-4, 27-3, 28-4, 34-4, 35-4, 36-3, 37-3, 39-4, 42-4, 43-3, 46-4

Уровень, температура,

давление, расход

Микропроцессорный

регулирующий контроллер

обмен ведется на частоте 4800 бит/с

Ремиконт Р-130

2

1-5, 2-4, 4-5, 6-5, 9-4, 11-5, 12-4, 16-5, 18-4, 19-4, 20-5, 21-4, 25-4, 26-5, 27-4, 28-5, 34-5, 35-5, 36-4, 37-4, 39-5, 42-5, 43-4, 46-5

Уровень, температура,

давление, расход

Функциональный электропневматический

преобразователь

вход I=0…5 мА

выход Р=0,02-0,1 МПа;

класс точности 0,5

ЭПП-М

24

По месту

1-6, 2-5, 4-6, 6-6, 9-5, 11-8, 12-5, 16-6, 18-5, 19-5, 20-6, 21-5, 25-5, 26-6, 27-5, 28-6, 34-6, 35-6, 36-5, 37-5, 39-6, 42-6, 43-5, 46-6

Уровень, температура, давление, расход

Регулирующий клапан для агрессивных сред

Ду=150 мм;

Ру=6,3 МПа

25ч30нж

24

По месту

11-7, 16-7, 19-6, 21-6, 26-6, 27-6, 31-3, 33-3, 35-7, 36-6 37-6, 40-3, 43-6, 46-7

Уровень, температура,

давление, расход

Сигнальная лампа

ЛС-4

14

В операторной

Список использованных источников

1. «Нефть, газ и нефтехимия за рубежом». Справвочник современных автоматизированных систем управления технологическими процессами. - 1989. - № 4

2. Давидюк Ю. SCADA-системы на верхнем уровне АСУТП // Платформы и технологии. - 2001. - №13 (электронный журнал, режим доступа http://www.iemag.ru/articles/detail.php?ID=2663&phrase_id=1251)

3. Ахметов С. А. Технология глубокой переработки нефти и газа: учебное пособие для вузов. Уфа: Гилем, 2002. - 672 с.

4. Сотникова Т. А., Соснова Н. А. // Химия и технология топлив и масел.- 2004.- №2.- С. 38-39.

5. Александрова С. Л., Таушев В. В., Валявин Г. Г. И др. // Нефтепереработка и нефтехимия.- 1997.- №5.- С. 14-19.

6. Старовойтова Н.Р. Автомобильные моторные масла. Тенденции производства и потребления // Мир нефтепродуктов. - 2002. - № 1. - с. 23.

7. Ластовкин Г.А., Радченко Е.Д., Рудин М.Г. Справочник нефтепереработчика. - Л.: Химия, 1986. - 648 с.

8. Черножуков Н.И. Технология переработки нефти и газа. Ч. 3 - М.: Химия, 1978 - 408 с.

9. Нигматуллин Р.Г., Золотарев П.А., Сайфуллин Н.Р. Селективная очистка масляного сырья - М.: Нефть и газ, 1998. - 208 с.

10. Казакова Л.П., Крейн С.Э. Физико-химические производства нефтяных масел - М.: Химия. 1978. - 320 с.

11. Колесник И.О. Процесс селективной очистки масляного сырья N-метипирролидоном // Химия и технология топлив и масел. - 2003. - № 2. - с. 4.

12. Гурвич В.Л., Сосновский Н.П. Избирательные растворители в переработке нефти. - М. - Л.: Госнаучтехиздат, 1953. - 320 с.

13. Альтшулер А.Е. Коротков П.И., Казанский В.Л., Герасименко Н.М. Производство смазочных масел - М.: Гостоптехиздат. - 1959. - 186 с.

14. Фаизов А.Р., Нигматуллин В.Р., Нигматуллин Р.Г. Развитие процесса селективной очистки масляного сырья N_метилпирролидоном в ОАО «Ново-уфимский НПЗ» // Мир нефтепродуктов. - 2003. - № 2. - с. 9.

15. Автоматическое управление в химической промышленности: Учебник для вузов / Под ред.Е.Д.Дудникова.:- М.: -Химия, 1987.- 368 с.

16. Дадаян Л.Г.,Кабанова Л.К.,Ямалов Р.Р.,Баклан Т.Н., Автоматизация технологических процессов: Методическое руководство.- Уфа,1985.-22 с.

17. Дисплейная станция ДС -130 // Приборы и системы управления. - № 10. - с. 34-37.

18. Пезнер В.В., Лахова Н.В., Никольская И.В. и др. Микропроцессорный контроллер Ремиконт Р - 130. - НИИ Теплоприбор, 1990. - 330 с.

19. Номенклатурный каталог продукции «Промышленной группы Метран» за 2001г.

Страницы: 1, 2, 3


ИНТЕРЕСНОЕ



© 2009 Все права защищены.