реферат бесплатно, курсовые работы
 

Агрегатно-поточный способ производства напорных железобетонных центрифугированных труб

Цементный камень является основным компонентом бетона, определяющим его свойства и долговечность. Основной составляющей микроструктуры цементного камня являются гидросиликаты кальция. Они создают определенную пространственную структуру, которая включает непрореагировавшую часть зерен цемента с оболочкой новообразований в виде системы глобул и межзерновое пространство, заполненное в той или иной мере новообразованиями. Цементный камень содержит участки с различной структурой, сложенные разными минералами. Его строение отличается сложностью, многообразием и неоднородностью. Неоднородность строения обусловлена тем, что цементный камень состоит из глобул цементных зерен с постепенно убывающей к их поверхности плотностью, контактной зоны между глобулами, состоящей из различных новообразований, а также включает поры, неплотности и дефекты структуры. Необходимо учитывать и химическую неоднородность камня, т.е. то, что отдельные участки состоят из отличающихся друг от друга минералов, и в некоторых местах возможно значительное увеличение содержания отдельных компонентов по сравнению с их средним значением, определяемым физико-химическим анализом. Микроструктура и неоднородность цементного камня существенно влияют на его прочность и другие свойства. Свойства цементного камня зависят от его минералогического состава. Изменяя минералогический состав вяжущего и условия твердения, можно получать различные типы микроструктуры цементного камня: ячеистую, зернистую, волокнистую, сотовую или сложные структуры. В технологии бетона используются различные вяжущие вещества, применяются разнообразные условия твердения бетона, что обусловливает различные типы микроструктуры цементного камня. Вблизи зерен заполнителя в результате влияния его поверхностных сил и ряда других причин микроструктура цементного камня может изменяться по сравнению со структурой основной массы, поэтому часто рассматривают особо микроструктуру и свойства контактной зоны между цементным камнем и заполнителем, выделяя ее в виде отдельного структурного элемента. Структура бетона, как правило, изотропна, т.е. ее свойства по разным направлениям (приблизительно) одинаковы. Однако путем особых приемов формования или введения специальных структурообразующих элементов структуре бетона может быть придана анизотропность, т.е. ее свойства в одном направлении будут заметно отличаться от свойств в другом направлении. Для различных видов бетона характерна своя структура. Для тяжелых бетонов характерна плотная структура, для легких конструктивных - плотная структура с пористыми включениями, ячеистые бетоны имеют ячеистую структуру, крупнопористые -зернистую. Подразделение на приведенные типы структур условно, в действительности структура бетона отличается большей сложностью, например, в плотной структуре тяжелого бетона цементный камень имеет значительное количество пор, в плотной структуре легкого бетона поры наблюдаются не только у заполнителя, но и в цементном камне и т.д. Однако представление о различных типах структур позволяет более четко проектировать состав бетона, используя характерные для каждого случая зависимости.

Бетоны являются искусственными каменными материалами. Известно, что прочность подобных материалов зависит от их плотности, т.к. она определяет плотность упаковки структурных элементов, объем и характер дефектов (пор, микротрещин).

Структура бетона неоднородна. Отдельные объемы материала могут значительно отличаться по своим свойствам, что оказывает заметное влияние на суммарные свойства материала. Могут различаться по свойствам не только цементный камень и заполнитель, но и отдельные зерна заполнителя друг от друга и отдельные микрообъемы цементного камня. Примером может служить изменение свойств цементного камня в контактной зоне. Сама контактная зона, как основной массив цементного камня, неоднородна, в ней содержатся более или менее дефектные места, непрореагировавшие зерна, микротрещины и другие элементы, снижающие однородность материала. Кроме того, структура и свойства бетона могут колебаться в незначительных пределах в разных изделиях и образцах, даже изготовленных из одного и того же состава. На рис.2 показана элементарная ячейка структуры бетона. Наглядно видна неоднородность структуры, включающей плотный и прочный материал с разными свойствами, переходные зоны, пустоты. Неоднородность структуры обусловливает неоднородность прочности бетона по объему, что показано на рис.3.

Схема структуры бетона и напряженного состояния сжатого бетонного образца показана на рис.4.

Структура бетона и схема напряженного состояния сжатого бетонного образца 1 - цементный камень; 2 - щебень; У - песок; 4 - поры, заполненные воздухом и водой; «--» - сжатие: « ¦ » - растяжение

Номенклатура продукции

Трубы напорные и безнапорные, опоры ЛЭП, шпалы, тюбинги тоннельной отделки, дорожные и аэродромные плиты ПАГ и т.д. относят к конструкциям и изделиям спецжелезобетона.

В зависимости от условий эксплуатации железобетонные трубы подразделяются на: напорные (с расчетным внутренним гидростатическим давлением 0,5-2 МПа), низконапорные (при давлении 0,3 МПа) и безнапорные.

Напорные трубы предназначены для прокладки напорных трубопроводов, по которым транспортируют жидкости с температурой не выше 40 °С с неагрессивной степенью воздействия на железобетон. Современные способы заводского изготовления позволяют выпускать напорные (раструбные) трубы диаметром 300-2500 мм, бетонные стенки которых при толщине 50-150 мм имеют прочность 40-100 МПа и обеспечивают водонепроницаемость при гидростатическом давлении до 3 МПа.

Основные типы напорных труб:

со стальным сердечником, состоящие из сварного стального цилиндра с приваренными к нему по концам обечайками, обеспечивающими гибкий или жесткий (сварной, фланцевый) стык внутреннего бетонного покрытия, арматуры, навитой на стальной цилиндр, и наружного защитного слоя из бетона; с предварительно напряженным железобетонным сердечником и защитным слоем без напряжения, в которых напряженная спиральная высокопрочная холоднотянутая проволочная арматура навита на предварительно напряженный в продольном направлении железобетонный сердечник, спиральная арматура покрыта защитным слоем из мелкозернистого бетона предварительного напряжения; с предварительно напряженной по всей толщине стенкой (сердечник и защитный слой) в кольцевом и продольном сечениях.

В зависимости от расчетного внутреннего гидростатического давления в трубопроводе напорные трубы подразделяются на четыре класса:

- рассчитанные на давление 2,0 МПа;

I - рассчитанные на давление 1,5-1,8 МПа;

III - рассчитанные на давление 1,0-1,2 МПа;

IV - рассчитанные на давление 0,5-0,8 МПа.

Предприятия изготавливают трубы: виброгидропрессованием (напорные диаметром 500-1600 мм); центрифугированием (напорные диаметром 300-600 мм со стальным сердечником); центробежным прокатом (напорные диаметром 1200-2000 мм).

Безнапорные трубы предназначены для прокладок подземных трубопроводов для транспортирования самотеком бытовых жидкостей и атмосферных сточных вод, а также грунтовых вод и производственных жидкостей, не агрессивных к железобетону и к уплотняющим резиновым кольцам стыковых соединений труб. Наиболее распространены:

- РТБ - раструбные цилиндрические с внутренним диаметром 400-1600 мм и длиной 5 м с упорным бутиком на поверхности втулочного конца и стыковыми соединениями, уплотняемыми при помощи резиновых колец;

- РТС - раструбные цилиндрические с внутренним диаметром 400-1600 мм и длиной 2,5-5 м со ступенчатой стыковой поверхностью втулочного конца и уплотнением стыковых поверхностей при помощи резиновых колец;

- РТПБ и РТПС - раструбные с подошвой и внутренним диаметром 1000-1600 мм и длиной 3,5-5 мм и упорным бутиком на стыковой поверхности втулочного конца (РТПБ) или со ступенчатой стыковой поверхностью втулочного конца (РТПС) и стыковыми соединениями, уплотняемыми при помощи резиновых колец. Предприятия изготовляют трубы: радиальным прессованием (безнапорные диаметром 300-800 мм); виброформованием (безнапорные диаметром 800-2000 мм).

Основные параметры изделий, принятых для производства.

Размер, мм

Марка (класс) бетона

Объем бетона, м3

Расход арматуры, кг

Годовая производительность

Изделие (эскиз)

Длина

Толщина

Диаметр (внутр.)

на изделие

на 1 м3 изделия

м3

шт

1. Железобетонные напорные трубы о 1200 мм

5 195

85

1 200

М500 (В 25)

1,98

144,10

72,80

14 000

7 070,7

2. Железобетонные напорные трубы о 1800

М500 (В 25)

5 225

115

1 800

3,93

313,4

82,8

9 800

2 493,6

Требования к материалам

Исходные материалы, применяемые в производстве железобетонных напорных труб со стальным сердечником, подразделяют на основные и вспомогательные.

К основным материалам относятся:

портландцемент марки не ниже 400 по ГОСТ 10178-85* для изготовления труб, предназначенных к эксплуатации в грунтах и грунтовых водах с содержанием сульфат-ионов до 5000 мг/л;

сульфатостойкий портландцемент марки не ниже 400 по ГОСТ 22266-76* для изготовления труб, предназначенных для эксплуатации в грунтах и грунтовых водах с содержанием сульфат-ионов св. 5000 мг/л;

песок по ГОСТ 10268-80. Фракции песка более 5 мм подлежат отсеву;

щебень по ГОСТ 8267-93, фракции 20 мм;

вода по ГОСТ 23732-79 для приготовления бетона труб;

горячекатаная лента толщиной 4 мм из углеродистой качественной конструкционной стали марки 08кп или 10кп по ГОСТ 1050-74** для изготовления калиброванных соединительных колец (втулка, раструб) и закладных изделий электрохимзащиты;

- арматурная проволока класса Вр-I диаметром 5 мм по ГОСТ 6727-80*, класса Врп-I диаметром 6 мм по ТУ 14-170-119-80 или класса СЭТО по ТУ

14-4-1120-82 для армирования труб;

- проволока цинковая или алюминиевая диаметром 1 - 2,2 для металлизации калиброванных соединительных колец. Сорта проволоки алюминиевой AT (твердая, нагартованная), АПТ (полутвердая, полунагартованная) и AM (мягкая, отожженная).

К вспомогательным материалам относятся:

- кольца резиновые уплотнительные круглого поперечного сечения диаметрами 16 и 24 мм, для герметизации стыков труб при гидравлических испытаниях и при монтаже трубопровода;

- смазка эмульсионная ОЭ-2 для смазки раструбных и втулочных торцевых шаблонных колец в соответствии с Инструкцией по приготовлению и применению эмульсионной смазки ОЭ-2 для форм при производстве железобетонных изделий (М., 1965);

- краска маркировочная ФЛ-59 по ТУ 1043-79 для маркировки труб;

- растворы марок КМ по ТУ 38-10796-76 или МС 5, МС 6, МС 8 по ТУ

6-15-978-76, или МЛ 51, МЛ 52 по ТУ 84-228-76, или лабомид 101, 203 по ТУ 38-30726-71 для обезжиривания стального сердечника;

- сварочная проволока диаметром 0,8 - 1,2 мм марки Св. 08Г2С и Св. 08ГА для сварки соединительных колец со стальным цилиндром;

- электроды диаметром 3 мм типа Э-42А для ремонта стальных цилиндров;

круги шлифовальные или диски шлифовальные фибровые диаметром до 200 мм для зачистки стыковых соединений калиброванных колец и ремонтируемых участков цилиндра;

-добавки, применяемые для приготовления бетона, должны удовлетворять требованиям нормативно-технической документации, утвержденной в установленном порядке, в данном случае используется суперпластификатор С-3;

- для контроля качества обезжиривания применяют медный купорос (CuS04x5H20) марок А и Б по ГОСТ 19347-84*Е.

Режим работы основных цехов предприятия

Наименование цеха

Количество

Годовой фонд времени, ч

рабочих дней в году

смен в сутки

часов в смене

Заготовительный (сырьевой) Бетоносмесительный Бетонных и железобетонных изделий Тепловая обработка

253

2

8

4048

Подбор состава бетона

Подберем состав тяжёлого бетона марки М500, с жёсткостью бетонной смеси 5... 10 с. Материалы: портландцемент марки М500, песок средней крупности с водопотребностью 7% и истинной плотностью 2,65 кг/л; щебень с предельной крупностью 20 мм, истинной плотностью 2,6 кг/л.

Определим цементноводное отношение по формуле:

Ц/В = (Rбпр+ 0,37Rцпр+ 3,22) / (0,43Rцпр +5,6)

где Rбпр - прочность бетона после тепловой обработки, МПа;

Rцпр - активность цемента при пропаривании, МПа.

Ц/В = (35+0,37*30+3,22)/(0,43*30 + 5,6) = 2,7.

Расход воды по таблице ориентировочного расхода воды для приготовления бетонной смеси составит:

В = 160 л/м3.

Определим расход цемента по формуле:

Ц = В*Ц/В;

где В - расход воды, л;

Ц/В -- цементноводное отношение.

Ц = 160 * 2,7 = 432 кг/м3.

Определим абсолютный объем заполнителя:

V3 = 1000 - B/в - Ц/ц

где св - плотность воды, равная 1 кг/м3;

сц - плотность цемента, равная 3,1 кг/м3.

V3 = 1000 - 160/1 - 432/3,2 = 700,6 кг/м3.

Определим расход мелкого заполнителя - песка:

П = V3 * r * сп;

где сп - плотность песка, равная 2,65 кг/л;

r - доля песка в смеси заполнителя, принимаемая по таблице 3,1 кг/м3.

П = 700,6 * 0,37 * 2,65 = 686,9 кг/м3.

Определим расход щебня по формуле:

Щ = V3 * (1 - r) * щ;

где щ - плотность щебня, равная 2,6 кг/м3;

r - доля песка в смеси заполнителя, принимаемая по таблице 3,1 кг/м3.

Щ = 700,6 * (1 - 0,37) * 2,6 = 1147,6 кг/м3.

Добавка вводится 0,7% в цементной массе:

Д = Ц * 0,7/100 = 432*(0,7/100) = 3,02 кг/м3.

Состав бетонной смеси:

В = 160 л/м3;

Ц = 432 кг/м3;

Щ = 1147,6 кг/м3; П = 686,9 кг/м3;

Д = 3,02 кг/м3.

Плотность бетонной смеси:

Ц + В + Щ + П + Д = 160 + 432 + 1147,6 + 686,9 + 3,02 = 2 430 кг/м3.

Расчёт потребности расхода сырьевых материалов

Количество изделий в год:

Qизд.год = Пг/v1изд., кол. шт, где

Пг - производительность завода в год, м3;

v1изд. - объём одного изделия, м3.

Q1изд.год = 14000/1,98 = 7071 кол.шт.

Q2изд.год= 9800/3,93 = 2494 кол.шт.

Количество бетонной смеси в год:

Qб.см.год = Пг * 1,015,

Пг - исходная производительность завода в год, м3;

1,015 - коэффициент технологических потерь.

Qб.см.год, 1 изд. = 14000 * 1,015 = 14210 м3.

Qб.см.год,2изд. = 9800 * 1,015 = 9947 м3.

Количество цемента в год:

Qц.год.1изд. = 14210 * 0,432 = 6 138,7 т.

Qц.год.2изд. = 9947 * 0,432 = 4 297,1 т.

Количество воды в год:

Qв.год.1изд. = 14210 * 0,16 = 2 273,6 м3. Qв.год.2изд. = 9947 * 0,16 = 1 591,5 м3.

Количество щебня в год:

Qщ.год,1изд = 1,1476*14210*1,02/1,45 = 11471,4 м3.

Qщ.год,2изд = 1,1476*9947*1,02/1,45 = 8030 м3.

Количество песка в год:

Qп.год,1изд = 0,6869*14210*1,02/1,5 = 6637,4 м3.

Qп.год,2изд = 0,6869*9947*1,02/1,5 = 4646,2 м3.

Количество добавки в год:

Qд.год,1изд = 3,02 *14210 = 42,9 т. Qд.год,2изд = 3,02 * 9947 = 30,04 т.

Производственная программа

Сырьё

Потребность

час

смена

сутки

год

Изделия, шт

1,7

13,9

27,9

7 071

0,6

4,9

9,8

2 494

Бетонная смесь, м3

3,5

28,1

56,2

14210

2,45

19,6

39,3

9 947

Цемент, т

1,5

12,2

24,3

6 138,7

1,1

8,5

16,98

4 297,1

Вода, м

0,56

4,5

9

2 273,6

0,4

3,15

6,3

1 591,5

Щебень, м

2,8

22,6

45,3

11 471,4

1,97

15,8

31,7

8 030

Песок, м3

1,6

13,1

26,2

6 637,4

1,15

9,2

18,4

4 646,2

Добавка, т

0,01

0,08

0,17

42,9

Страницы: 1, 2, 3


ИНТЕРЕСНОЕ



© 2009 Все права защищены.