реферат бесплатно, курсовые работы
 

Агрегатно-поточный способ производства напорных железобетонных центрифугированных труб

Агрегатно-поточный способ производства напорных железобетонных центрифугированных труб

Московская Государственная Академия Коммунального Хозяйства и Строительства

Технологический факультет

Кафедра технологии вяжущих материалов и бетонов

Расчётно-пояснительная записка

к курсовому проекту по курсу: Прогрессивные технологии в производстве строительных материалов

на тему: Агрегатно-поточный способ производства напорных железобетонных центрифугированных труб

Москва, 2010

Введение

Бетоны на основе неорганических вяжущих веществ представляют собой искусственные строительные конгломераты (ИСК), получаемые в результате твердения рациональной по составу, тщательно перемешанной и уплотненной бетонной смеси из вяжущего вещества, воды и заполнителей. Кроме основных компонентов в состав бетонной смеси могут вводиться дополнительные вещества специального назначения. Среди других ИСК бетоны относятся к самым массовым по применению в строительстве вследствие их высокой прочности, надежности и долговечности при работе в конструкциях зданий и сооружений. Кроме высокой прочности, у бетонов на основе неорганических вяжущих веществ имеется много и других достоинств: легкая формуемость бетонной смеси с получением практически любых наперед заданных форм и размеров изделий и конструкций, доступность высокой механизации технологических операций и т.п.

Большая экономичность изделий из бетона состоит в том, что для их производства применяют свыше 80% объема местного сырья -- песка, щебня, гравия, побочных продуктов промышленности в виде шлака, золы и др. По некоторым зарубежным данным, количество энергии, требующейся для производства бетонных материалов, является минимальным по сравнению с энергией (приведенной к единому эквиваленту), необходимой для изготовления стали, алюминия, стекла, кирпича, пластмасс. Для затворения порошкообразных вяжущих в тестообразное состояние и получения бетонной смеси используют обычную воду -- питьевую из водопровода или речную, озерную и др. Расход воды также ниже, чем при производстве стали. После твердения тесто образует камень, например, цементный камень (микроконгломерат), а уплотненная бетонная смесь -- бетон (конгломерат). Часть объемов в бетоне, заполнителе и камне занимают поры и капилляры разного размера и в различном количестве.

Для бетонов применяются почти все разновидности неорганических вяжущих, соответственно чему бетоны разделяются на цементные, гипсовые, силикатные, шлаковые, специальные (на фосфатных, магнезиальных и других вяжущих). Для них применяются также все разновидности заполнителей, соответственно чему бетоны разделяют на плотные, пористые, специальные. При объединении вяжущих и заполнителей в принятых по составу количествах получают множество технических решений при производстве искусственных строительных конгломератов различного назначения. Если этих двух компонентов окажется недостаточно, тогда вводят дополнительные вещества (добавки). Еще более сильным фактором, которым пользуются при получении бетонов с заданными свойствами, является технология с ее многообразными операциями (переделами), режимами (тепловыми, механическими и пр.) и характеристиками оборудования.

К одному из показателей заданных свойств относится средняя плотность бетона. Величина средней плотности бетона зависит от разновидности заполнителя, а отчасти обусловлена пористостью цементного камня. Особо тяжелые со средней плотностью свыше 2500 получают при заполнителях в виде железной руды, барита, чугунного скрапа, обрезков стали или чугуна. Тяжелые -- средней плотности 2200... 2500 получают применением в них в качестве заполнителя щебня из плотных горных пород -- гранитов, диабаза, песчаника и др.; облегченные -- со средней плотностью 1800... 2200. В легких бетонах со средней плотностью 500 ...2000 кг/мЗ используется легкий заполнитель, природный или искусственный, в том числе пемза, туфы, керамзит, аглопорит, вакулит, а также в них нередко отсутствует песчаная фракция, вследствие чего возникают пустоты между щебнем, а сам бетон именуется крупнопористым легким бетоном. Особо легкие бетоны (теплоизоляционные) со средней плотностью менее 500 кг/мЗ характеризуются тем, что функции своеобразного заполнителя в них переданы воздушным или газовым ячейкам.

При наибольшей крупности заполнителя до 10 мм -- бетоны мелкозернистые, более 10 мм -- крупнозернистые.

В зависимости от производственного назначения бетоны разделяют на конструкционные, предназначенные для изготовления бетонных и железобетонных внутренних и наружных конструкций промышленных и гражданских зданий и инженерных сооружений (колонны, балки, плиты); гидротехнические -- для строительства плотин, шлюзов, облицовки каналов и других гидротехнических сооружений; дорожные -- для строительства дорожных и аэродромных оснований и покрытий; специальные -- для использования при устройстве жароупорных покрытий, кислотоупорных изделий.

При проектировании заводов по выпуску напорных труб для систем водоснабжения и канализации применяют трехступенчатую технологию, предусматривающую послойную формовку железобетонного сердечника на центрифуге или на виброплощадке. Данный курсовой проект рассматривает конструкционный вид бетона для производства напорных железобетонных труб методом центрифугирования.

Формы для производства центрифугированных железобетонных труб, состоят из двух полуцилиндров соединяющихся с помощью откидных болтов.

Производство железобетонных труб производят в такой последовательности: сначала методом трехслойного центрифугирования изготовляют предварительно напряженный бетонный сердечник, на который навивают спиральную напряженную арматуру и наносят цементно-песчаный слой толщиной 15--20 мм. Затем изделие пропаривают. При однослойном центрифугировании под влиянием прессующего давления, возникающего от центробежной силы, из бетонной смеси отжимают излишнюю воду, которая оставляет в стенках трубы радиально направленные поры. При многослойном формовании трубы каждый слой бетонной смеси уплотняют отдельно; образующиеся поры перекрывают следующим слоем и обеспечивают высокую водонепроницаемость напорных труб.

Отформованные таким способом трубы способны выдерживать гидравлическое давление до 2,4 МН/м2.

Процесс изготовления напорных труб начинают с подготовки формы. Оба полуцилиндра, очищенные и смазанные солидолом, соединяют с помощью стяжных болтов. В собранную форму вставляют раструбное кольцо и к ее торцам прикрепляют днище. Продольное натяжение арматуры в форме осуществляют на посту, где арматура с высаженными головками пропускается через отверстия кольца и днища внутрь формы (рис. 1.1). Подготовленную форму укладывают на центрифугу, после чего ее включают на малые обороты для регулирования положения формы точно по оси центрифуги (рис. 1.2).

Бетонную смесь загружают в приемный бункер ленточного питателя и затем питатель вводят внутрь формы (рис. 1.3). При включении транспортера питатель совершает возвратно-поступательные движения, и бетонная смесь поступает во вращающуюся форму. Цикл перемещения ленточного транспортера повторяется до полной загрузки формы. После этого уменьшают обороты центрифуги, чтобы загруженная в форму бетонная смесь распределилась равномерным слоем по внутренней поверхности формы и покрыла арматуру (рис. 1.4). Затем обороты центрифуги увеличивают до номинальных для уплотнения бетонной смеси. Время центрифугирования зависит от диаметра формуемого изделия. Для труб диаметром 500 мм оно составляет 37 мин, для труб диаметром 600 мм -- 43 мин, для труб диаметром 700 мм -- 50 мин. При формовании железобетонных труб центрифугированием целесообразно использовать шнековые или ленточные раздатчики, хотя в настоящее время широко применяют ложковые питатели. Ложки бетоноукладчика загружают бетонной смесью по всей длине и включают привод самоходной тележки, а бетоноукладчик подают так, чтобы его ложка вошла в форму. После включения механизма поворота ложки постепенно опрокидывают и после освобождения от бетонной смеси их возвращают в первоначальное положение и ставят на очередную загрузку бетонной смесью.

После этого форму с изделием с помощью кантователя перемещают в вертикальном положении на пост пропаривания раструбом вниз, а торец формы прикрывают крышкой (рис. 1.5). В этом положении сердечник с формой выдерживают около 2 ч, а затем внутрь сердечника подают пар. Пропаривание производят в течение 4 ч при температуре 90... 95°С (рис. 1.6). Затем с помощью кантователя форму приводят в горизонтальное положение и подают на пост распалубки (рис. 1.7). На этом посту также плавно передают напряжение арматуры на бетон. При температуре не более 50°С бетонные сердечники освобождают от форм и подают в камеры водного твердения, где они находятся до 3 сут при температуре воды 45... 50°С и приобретают не менее 70% прочности от проектной (рис. 1.8). Готовые сердечники укладывают на арматурно-навивочный станок для навивки предварительно напряженной арматуры - высокопрочной проволоки периодического профиля диаметром 4 или 5 мм (рис. 1.9). Предварительное напряжение вызывается грузом (усилием 30...35% от заданного натяжения) и одновременно нагреванием (в процессе намотки) электрическим током до температуры 250...300°С.

После навивки спиральной арматуры сердечники перемещают на станок для нанесения защитного слоя (рис. 1.10). Готовую трубу с нанесенным защитным слоем помещают в линейную камеру для пропаривания по режиму: предварительная выдержка -- 2 ч, подъем температуры до 80...95°С - 2 ч и пропаривание при этой температуре -- 4 ч, т. е. всего 8 ч (рис. 1.11). После этого железобетонную трубу подвергают гидравлическим испытаниям на внутреннее давление (рис. 1.12). Если на поверхности трубы при контрольном давлении в 1,5 МН/м2, создаваемом водой в течение 10 мин, не обнаруживаются признаки водопроницаемости (струи, капли, влажные пятна), не возникнут трещины в защитном слое, то она считается годной к использованию. Трубы, успешно прошедшие испытания, хранятся на складе готовой продукции (рис. 1.13).

Физико-химические свойства бетона

При изготовлении железобетонных изделий и бетонировании монолитных конструкций самым важным свойством бетонной смеси является удобоукладываемостъ, т.е. способность заполнять форму при данном способе уплотнения, сохраняя свою однородность.

Для оценки удобоукладываемости используют три показателя:

> подвижность бетонной смеси (П), являющуюся характеристикой структурной прочности смеси;

> жесткость (Ж), являющуюся показателем динамической вязкости бетонной смеси;

> связность, характеризуемую водоотделением бетонной смеси после ее отстаивания.

Подвижность бетонной смеси характеризуется измеряемой осадкой (см) конуса (ОК), отформованного из бетонной смеси, подлежащей испытанию. Подвижность бетонной смеси вычисляют как среднее двух определений, выполненных из одной пробы смеси. Если осадка конуса равна нулю, то удобоукладываемость бетонной смеси характеризуется жесткостью.

Жесткость бетонной смеси характеризуется временем (с) вибрирования, необходимым для выравнивания и уплотнения предварительно отформованного конуса бетонной смеси в приборе для определения жесткости.

Связность бетонной смеси обуславливает однородность строения и свойств бетона. Очень важно сохранить однородность бетонной смеси при перевозке, укладке в форму и уплотнении. При уплотнении подвижных бетонных смесей происходит сближение составляющих ее зерен, при этом часть воды отжимается вверх. Уменьшение количества воды затворения при применении пластифицирующих добавок и повышение водоудерживающей способности бетонной смеси путем правильного подбора зернового состава заполнителей являются главными мерами борьбы с расслоением подвижных бетонных смесей.

Количество воды затворения является основным фактором, определяющим удобоукладываемость бетонной смеси. Вода затворения (В, кг/мЗ) распределяется между цементным тестом (Вц) и заполнителем (Взап): В= Вц + Взап. Количество воды в цементном тесте определяют его реологические свойства: предельное напряжение сдвига и вязкость, а, следовательно, и технические свойства бетонной смеси - подвижность и жесткость.

Водопотребностъ заполнителя Взап является его важной технологической характеристикой; она возрастает с увеличением суммарной поверхности зерен заполнителя и поэтому велика у мелких песков.

Для обеспечения требуемой прочности бетона величина водоцементного отношения должна сохраняться постоянной, поэтому возрастание водопотребности вызывает перерасход цемента. При мелких песках он достигает 15-25%, поэтому мелкие пески следует применять после обогащения крупным природным или дробленым песком и с пластифицирующими добавками, снижающими водопотребность.

Под нагрузкой бетон ведет себя иначе, чем сталь и другие упругие материалы. Конгломератная структура бетона определяет его поведение при возрастающей нагрузке осевого сжатия.

Область условно упругой работы бетона - от начала нагружения до напряжения сжатия, при котором по поверхности сцепления цементного камня с заполнителем образуются микротрещины.

Опыты подтвердили, что при небольших напряжениях и кратковременном нагружении для бетона характерна упругая деформация, подобная деформации пружины.

Модуль упругости бетона возрастает при увеличении прочности и зависит от пористости: увеличение пористости бетона сопровождается снижением модуля упругости.

При одинаковой марке по прочности модуль упругости легкого бетона на пористом заполнителе меньше в 1,7-2,5 раза тяжелого. Еще ниже модуль упругости ячеистого бетона. Таким образом, упругими свойствами бетона можно управлять, регулируя его структуру. Модуль упругости бетона при сжатии и растяжении принимают равными между собой:

Есж = Ер = Еб

Ползучестью называют явление увеличения деформаций бетона во времени при действии постоянной статической нагрузки.

Ползучесть зависит от вида цемента и заполнителей, состава бетона, его возраста, условий твердения и влажности. Меньшая ползучесть наблюдается при применении высокомарочных цементов и плотного заполнителя - щебня из изверженных горных пород. Пористый заполнитель усиливает ползучесть, поэтому легкие бетоны имеют большую ползучесть по сравнению с тяжелыми.

Преждевременное высыхание бетона ухудшает структуру и увеличивает его ползучесть. Однако насыщение водой затвердевшего бетона может вызвать рост ползучести.

Ползучесть и связанная с ней релаксация напряжений может играть отрицательную роль. Например, ползучесть бетона приводит к потере натяжения в предварительно напряженных железобетонных конструкциях.

При твердении на воздухе происходит усадка бетона, т.е. бетон сжимается и линейные размеры бетонных элементов сокращаются. Усадка слагается из влажностной, карбонизационной и контракционной составляющих. Вследствие усадки бетона в железобетонных и бетонных конструкциях возникают усадочные напряжения, поэтому сооружения большой протяженности разрезают усадочными швами во избежание появления трещин. Ведь при усадке бетона 0,3 мм/м в сооружении длиной 30 м общая усадка составляет около 10 мм. Массивный бетон высыхает снаружи, а внутри он еще долго остается влажным. Неравномерная усадка вызывает растягивающие напряжения в наружных слоях конструкции и появление внутренних трещин на контакте с заполнителем и в самом цементном камне.

Для снижения усадочных напряжений и сохранения монолитности конструкций стремятся уменьшить усадку бетона. Наибольшую усадку имеет цементный камень. Введение заполнителя уменьшает количество вяжущего в единице объема материала, при этом образуется своеобразный каркас из зерен заполнителя, препятствующий усадке. Поэтому усадка цементного раствора и бетона меньше, чем цементного камня.

Бетон наружных частей гидротехнических сооружений, цементно-бетонных дорог периодически увлажняется и высыхает. Колебания влажности бетона вызывают попеременные деформации усадки и набухания, которые могут вызвать появление микротрещин и разрушение бетона.

Морозостойкость бетона определяют путём попеременного замораживания в холодильной камере при температуре от 15 до 20°С и оттаивания в воде при температуре 15-20°С бетонных образцов кубов с размерами ребра 10, 15 или 20 см (в зависимости от наибольшей крупности заполнителя). Образцы испытывают после 28 суток выдержки в камере нормального твердения или через 7 суток после тепловой обработки. Контрольные образцы, предназначенные для испытания на сжатие в эквивалентном возрасте, хранят в камере нормального твердения. Морозостойкость бетона зависит от качества примененных материалов и капиллярной, пористости бетона. Объем капиллярных пор оказывает решающее влияние на водопроницаемость и морозостойкость бетона. Морозостойкость бетона значительно возрастает, когда капиллярная пористость менее 7%.

С уменьшением объема капиллярных макропор снижается водонепроницаемость и одновременно повышается морозостойкость бетона. Для уменьшения водонепроницаемости в бетон при его изготовлении вводят уплотняющие (алюминат натрия) и гидрофобизующие добавки. Нефтепродукты (бензин, керосин и др.) имеют меньшее, чем у воды, поверхностное натяжение, поэтому они легче проникают через обычный бетон. Для снижения фильтрации нефтепродуктов в бетонную смесь можно вводить специальные добавки (хлорное железо и др.). Проницаемость бетона по отношению к воде и нефтепродуктам резко уменьшается, если вместо обычного портландцемента применяют расширяющийся.

Теплопроводность - наиболее важная теплофизическая характеристика бетона, в особенности применяемого в ограждающих конструкциях зданий.

Теплопроводность тяжелого бетона в воздушно-сухом состоянии 1,2 Вт/(м.°С), т.е. она в 2-4 раза больше, чем у легких бетонов (на пористых заполнителях и ячеистых). Высокая теплопроводность является недостатком тяжелого бетона. Панели наружных стен из тяжелого бетона изготавливают с внутренним слоем утеплителя. Теплоемкость тяжелого бетона изменяется в узких пределах -0,75-0,92 Вт/(м. С°).

Линейный коэффициент температурного расширения бетона составляет около 0,00001°С, следовательно, при увеличении температуры на 50°С расширение достигает примерно 0,5 мм/м. Во избежание растрескивания сооружений большой, протяженности разрезают температурно-усадочными швами.

Крупный заполнитель и раствор, составляющие бетон, имеют различный коэффициент температурного расширения и будут по разному деформироваться при изменении температуры. Большие колебания температуры (более 80°С) смогут вызвать внутреннее растрескивание бетона вследствие различного теплового расширения крупного заполнителя и раствора. Характерные трещины распространяются по поверхности заполнителя, некоторые из них образуются в растворе, а иногда и в слабых зернах заполнителя. Внутреннее растрескивание можно предотвратить, если позаботиться о подборе составляющих бетона с близкими коэффициентами температурного расширения.

Физико-химические процессы твердения бетона

Структура бетонной смеси при затвердевании сохраняется. Поэтому структуру бетона следует классифицировать по содержанию цементного камня и его размещению в бетоне.

Однако на свойства бетона определяющее влияние оказывает его плотность или пористость. При прочих равных условиях объем и характер пористости, а также соотношение в свойствах отдельных составляющих бетона определяют его основные технические свойства, долговечность, стойкость в различных условиях. В этой связи целесообразно классифицировать структуру бетона с учетом ее плотности. На рисунке 2 показаны основные типы структур: плотная, с пористым заполнителем, ячеистая и зернистая.

Рис 2. Основные типы макроструктуры бетона

1- плотная; 2- плотная с пористым заполнителем;; 3- зернистая; R6-средняя прочность структуры; R1 и R2 - прочности составляющих бетона

Плотная структура, в свою очередь, может иметь контактное расположение заполнителя, когда его зерна соприкасаются друг с другом через тонкую прослойку цементного камня, и «плавающее» расположение заполнителя, когда его зерна находятся на значительном удалении друг от друга. Плотная структура состоит из сплошной матрицы твердого материала, в которую вкраплены зерна другого твердого материала (заполнителя), достаточно прочно связанные с материалом матрицы. Ячеистая структура отличается тем, что в сплошной среде твердого материала распределены поры различных размеров в виде отдельных условно замкнутых ячеек. Зернистая структура представляет собой совокупность скрепленных между собой зерен твердого материала. Пористость зернистой структуры непрерывна и аналогична пустотности сыпучего материала.

Наибольшей прочностью обладают материалы с плотной структурой, а наименьшей - с зернистой. Плотные материалы менее проницаемы, чем ячеистые, а те, в свою очередь, менее проницаемы, чем материалы зернистой структуры. Последние обладают, как правило, наибольшим водопоглощением. Большое влияние на свойства материала оказывает размер зерен, пор или других структурных элементов. В этой связи в бетоне различают макроструктуру и микроструктуру. Под макроструктурой понимают структуру, видимую глазом или при небольшом увеличении. В качестве структурных элементов здесь различают крупный заполнитель, песок, цементный камень, воздушные поры. Микроструктурой называют структуру, видимую при большом увеличении под микроскопом, которая состоит из непрореагировавших зерен цемента, новообразований и микропор различных размеров.

Страницы: 1, 2, 3


ИНТЕРЕСНОЕ



© 2009 Все права защищены.