реферат бесплатно, курсовые работы
 

Железоуглеродистые сплавы. Медь и ее сплавы

Восстановление железа из руды начинает происходить при помощи окиси углерода (непрямое восстановление) в верхних горизонтах печи, где температура не высока, и постепенно усиливается при опускании вниз по мере повышения температуры примерно до 900C. Обычно в доменных газах содержится небольшое количество водорода, поэтому основное восстановление идёт за счёт окиси углерода и углерода кокса.

Восстановление окисью углерода начинается в шахте и происходит ступенчато от высшего окисла железа к низшему в следующем порядке:

Fe2O3 Fe3O4 FeO Fe.

Протекают следующие реакции восстановления:

3Fe2O3 + CO = 2Fe3O4 + CO2 (4)

Fe3O4 + CO = 3FeO CO2 (5)

FeO + CO = Fe + CO2 (6)

Основной реакцией считается реакция (6), т.к. конечным продуктом является металлическое железо и она называется реакцией косвенного восстановления железа, протекает при умеренных температурах (500…900C) с выделением тепла.

При более высоких температурах (выше 1000…1100C) в присутствии раскалённого кокса в доменной печи идёт восстановление железа при помощи углерода по реакции:

FeO + C = Fe + CO (7)

Эта реакция называется прямым восстановлением железа. Считается, что в доменной печи около 60…50% железа образуется по реакции (6), т.е. с помощью окиси углерода и 50…40% с помощью твёрдого углерода. Прямое восстановление железа происходит в районе распара доменной печи. Образующееся в доменной печи металлическое железо находится в твёрдом виде (губчатое железо), поскольку оно имеет температуру плавления 1535C. В присутствии окиси углерода губчатое металлическое железо постепенно науглероживается по реакции:

3Fe + 2CO = Fe3C + CO2 (8)

Температура его плавления понижается вплоть до 1150…1200C. Вследствие этого науглероженное железо (от 1,8 до 2 % C) переходит в жидкое состояние (расплавляется) и стекает по каплям между кусками раскалённого кокса на лещадь горна доменной печи.

Во время перемещения капелек металла происходит дополнительное насыщение железа углеродом примерно до 3,5…4 %, т.е. до обычного содержания углерода в жидком чугуне. Параллельно с процессом восстановления железа в доменной печи наблюдается восстановление из шихты марганца, кремния и фосфора, которые переходят в чугун.

Восстановление высших и средних окислов марганца до низшего окисла происходит ступенчато за счёт окиси углерода по схеме:

MnO2 Mn2O3 Mn3O4 MnO Mn

Закись марганца MnO трудно восстановимый низший окисел марганца, восстанавливается твёрдым углеродом по реакции:

MnO + C = Mn + CO (9)

Реакция сопровождается поглощением тепла и происходит при температурах выше 1100…1200C. Восстановление кремния из пустой породы происходит при температуре 1450C при помощи твёрдого углерода по реакции:

SiO2+ 2C = Si + 2CO - Q (10)

В присутствии железа эта реакция начинается при температуре 1050C и требует поглощения меньшего количества тепла.

Фосфор содержится в руде в виде соединений (FeO)3P2O5 и (CaO)3P2O5 и восстановление его в присутствии пустой породы железной руды совершается за счёт твёрдого углерода:

P2O5(CaO)4 + 5C + 2SiO2 = 2P + 2(CaO)2*SiO2 + 5CO (11)

и фосфат железа восстанавливается окисью углерода:

2Fe3(PO4)2 +16CO = 2Fe3P + 2P + 16CO2 (12)

Сера поступает в плавку с рудой, флюсом и коксом в виде сульфида железа. Часть серы улетучивается (от 10 до 60%), оставшаяся часть серы руды и кокса переходит в шлак и в металл. Для удаления серы в шлак необходимо иметь избыточное количество извести:

FeS + CaO = FeO +CAS + Q (13)

Образующееся сернистое железо вступает в реакцию с известью. Другой путь удаления серы из чугуна - это после выпуска из печи выдержке и при перевозках в ковшах наличие реакции взаимодействия сернистого железа с марганцем:

FeS + Mn = MnS + Fe +Q (14)

Никель подобно железу восстанавливается окисью углерода, твёрдым углеродом и водородом. Процесс восстановления начинается и заканчивается раньше восстановления железа.

Хром, никель, титан и ванадий принадлежат к числу трудно восстанавливаемых элементов и восстанавливаются только твёрдым углеродом при температуре выше 1250…1300C.

Шлакообразование, т.е. сплавление пустой породы руды с флюсом, начинается с образования наиболее лёгкоплавкого соединения из кремнезёма, глинозёма и извести. Это происходит в распаре при температуре около 1200C. При более высоких температурах он изменяет свой химический состав в связи с растворением в нём золы кокса, флюсов и остатков пустой породы железной руды. Окончательный состав шлака находится в заплечиках и горне.

1.2.2 Продукты доменной плавки

Основным продуктом доменной плавки является чугун.

Расплавленный чугун через одну - две лётки по 10 - 18 раз в сутки выпускают из доменной печи. В ковшах - чугуновозах ёмкостью, 80…100 т, везут его по железнодорожным путам, попадают либо в сталеплавильный цех для передела в сталь, либо на разливочную машину. В первом случае чугун сливают в миксеры (копильники), ёмкостью до 2000 т, отапливаемые газом. При выдержке в миксере выравниваются химический состав и температура чугуна, происходит дополнительное удаление серы.

Разливочная машина представляет собой конвейер с укреплёнными на нём формами (мульдами); в них получают небольшие слитки - чугунные чушки (до 55 кг), которые направляют на другие заводы.

В доменных печах выплавляют передельные и литейные чугуны, а также некоторые ферросплавы.

Передельные чугуны по ГОСТ 805-69 3-х видов:

1. коксовый М1, М2, М3, Б1, Б2;

2. фосфористый МФ1, МФ2, МФ3;

3. высококачественный ПВК1, ПВК2, ПВК3.

По содержанию вредных примесей (P и S) чугуны делятся на классы (А,Б и т.д.) по фосфору и на категории (I, II и т.д.) по сере.

Наиболее распространены чугуны М1, М2, М3 содержат 3,8 - 4,4 % C, 0,5…1,5 % Si, 0,5…1,5 % Mn, 0,15…0,3 % P, 0,02…0,06 % S. Чугуны этих марок применяют для выплавки стали мартеновским и кислородно - конвер-

торным способом.

Чугуны марок Б1, Б2, содержащие фосфора 0,06 % (класс А) и серы 0,04%(категория III), используют для передела в сталь кислым процессом.

Фосфористые чугуны МФ1, МФ2 и МФ3 содержат 1…2 % P, их переделывают в сталь в мартеновских качающихся печах.

Высококачественные чугуны ПВК1, ПВК2, ПВК3 имеют минимальное содержание вредных примесей (например, класс А 0,02 % P, категория I - 0,015% S) и используют для выплавки качественных сталей в электродуговых печах и др.

Литейные чугуны ЛКО…ЛК5 применяют для получения литых деталей. В этих чугунах содержится до 3,75 % Si (ЛКО), 0,5…1,3 % Mn, 0,02..0,07 % S (категории I, II, III). Обычные литейные чугуны содержат 0,1…0,3 % P, для художественного литья применяют фосфористые чугуны, содержащие до 1,2% P.

Доменные ферросплавы: зеркальные чугуны ЗЧ1, ЗЧ2, ЗЧ3 содержат 10…25 % Mn, ферромарганец Мн6, Мн7 (70…75 % Mn), доменный ферро - силиций Си10, Си15 (9…13 % Si иногда и больше) и до 3 % Mn. Эти сплавы применяют при выплавке сталей для раскисления и легирования.

В доменных печах из руд некоторых месторождений выплавляют также природно-легированные чугуны, содержащие Cr, V, Ni и т.п.

Доменный процесс имеет также и побочные продукты: доменный шлак, доменный (колошниковый) газ, колошниковая пыль.

Доменный шлак - побочный продукт плавки и применяется для получения строительных материалов. Широкое применение нашла мокрая грануляция шлаков: шлак выливают в воду и он превращается в мелкозернистый материал. Гранулированный шлак используют для производства цемента, шлаковых строительных кирпичей и блоков, и т.д.

Доменный или колошниковый газ. При сгорании 1 т кокса выделяется примерно 5000 м3 газа. Таким образом, в крупных печах V = 3000…3200 м3 в сутки выделяется примерно 15…17 млн. м3 газа. Он содержит значительное количество горючих составляющих (26…32 % CO и до 4 % H2), его теплотво- рная способность примерно 850…950 кал / м3. после очистки от пыли (части- цы руды, флюса, кокса) доменный газ используют как топливо для нагрева воздухонагревателей доменных печей, водяных и паровых котлов, в смеси с природным газом используют для отопления мартеновских и нагревательных печей. Колошниковая пыль содержит 45…50 % Fe и её используют при агломерации.

2. Термическая обработка железоуглеродистых сплавов

Термической обработкой называют процессы нагрева и охлаждения, проведенные по определенному режиму, для направленного изменения структуры металла с целью получения необходимых эксплуатационных свойств.

2.1 Превращения в стали при нагревании

Нагрев стали при термической обработки используют для получения мелкозернистого аустенита.

Эвтектоидная сталь при нормальной температуре имеет структуру перлита. В процессе ее нагревания при температуре 727° С перлит превращается в аустенит.

В доэвтектоидных сталях (Ф+П) при дальнейшем нагревании происходит превращение феррита в аустенит, которое заканчивается при температуре 830°С.

У заэвтектоидных сталей (Ц+П) идет процесс растворения цементита в аустените, заканчивающийся при 940°С.

Образование аустенита обеспечивает перестройку -железа в -железо с растворением в нем углерода.

Для завершения диффузионных процессов и получения однородного аустенита сталь нагревают до температур на 30-50° выше критических (830°С, 940°С или 727°С) и выдерживают при этих температурах определенное время.

2.2 Превращения в стали при охлаждении

Аустенит устойчив только при температуре 727°С. При охлаждении стали, предварительно нагретой до аустенитного состояния, аустенит становится неустойчивым - начинается его превращение.

При медленном понижении температуры получается грубая смесь феррита и цементита, которая называется перлитом. Распад аустенита с образованием перлита является диффузионным процессом.

Если сталь нагретую до состояния аустенита охлаждать с большой скоростью, то будет переохлаждение аустенита с его распадом и образованием мелкозернистой ферритно-цементитной смеси. Чем больше скорость охлаждения, тем мельче ферритно-цементитная смесь. Образующиеся более мелкие, по сравнению с перлитом, структуры, имеют повышенную твердость и свое особое название.

При охлаждении стали на воздухе аустенит распадается с образованием сорбита. Его образование начинается при 600°С и заканчивается при 500°С. Сталь, в которой преобладает структура сорбита, обладает высокой прочностью и пластичностью.

При еще более низких температурах - 500-200°С - образуется троостит, обладающий еще большей дисперсностью. Сталь со структурой троостита имеет повышенную твердость, достаточную прочность, вязкость и пластичность.

По своему строению перлит, сорбит и троостит очень сходны. Все они являются механическими смесями феррита и цементита и отличаются лишь размерами пластинок феррита и цементита.

В случае очень высокой скорости охлаждения (в воде) удается полностью подавить диффузионные процессы, происходит только бездиффузионное превращение, которое называется мартенситом. Мартенсит отличается от сорбита и троостита и по структуре и по свойствам. Он представляет собой твердый раствор углерода в -железе, имеет игольчатое строение, обладает высокой твердостью, низкой пластичностью. Особенность его структуры объясняется тем, что при резком охлаждении углерод не успевает выделиться из твердого раствора аустенита в виде частичек цементита, как это происходит при образовании перлита, сорбита и троостита. Происходит только перестройка решетки -железа в решетку -железа. Атомы углерода остаются в решетке -железа (мартенсита) и поэтому сильно ее искажают.

При температурах, когда диффузия атомов железа сильно замедляется, а атомов углерода протекает сравнительно легко (скорость охлаждения выше, чем при образовании троостита, но недостаточна для получения мартенсита), происходит промежуточное - бейнитное - превращение, для которого характерны особенности как перлитного, так и мартенситного превращений. В результате промежуточного превращения образуется структура, состоящая из смеси -фазы, часто пресыщенной углеродом и карбида (цементита), которая называется бейнит, или игольчатый троостит.

2.3 Основные виды термической обработки стали

2.3.1 Отжиг стали

Отжиг стали - термическая обработка, включающая при полном отжиге нагрев до температуры выше верхних критических точек на 30...50°С, выдержку при такой температуре до полного прогрева металла и последующее очень медленное охлаждение (вместе с охлаждаемой печью). При неполном отжиге нагрев стали производится до температур выше нижних критических точек на 30...50°С, а при низкотемпературном отжиге - до температур, лежащих ниже нижних критических точек. При неполном и низкотемпературном отжигах происходит только частичная перекристаллизация. Структура стали после отжига образуется в полном соответствии с диаграммой состояния железоуглеродистых сплавов.

Отжиг стали производится в тех случаях, когда необходимо уменьшить твердость, повысить пластичность и вязкость, ликвидировать последствия перегрева, получить равновесное состояние, улучшить обрабатываемость при резании.

Разновидностями отжига сталей являются нормализационный и изотермический отжиги.

Нормализационный отжиг (нормализация) - вид термической обработки стали, заключающийся в нагреве до температуры на 30...50°С выше верхних, критических точек, выдержке и охлаждении на спокойном воздухе. В результате нормализации стали с содержанием углерода менее 0,3% приобретают ферритно-перлитную структуру, а стали с содержанием углерода 0,3...0,7% - сорбитную.

Нормализация применяется в тех случаях, когда необходимо получить мелкозернистую однородную структуру с более высокой твердостью и прочностью, но с несколько меньшей пластичностью, чем после отжига. При нормализации в заэвтектоидных сталях устраняется цементитная сетка, поэтому ею часто заменяют полный или неполный отжиг при подготовке углеродистых сталей к механической обработке. Нормализация более производительный и экономичный процесс, чем отжиг.

Изотермический отжиг - вид термической обработки стали, заключающийся в нагреве стали до температуры, на 30...50°С превышающей верхнюю критическую точку, выдержке при этой температуре, а затем переносят детали в другую печь с заданной температурой (ниже верхней критической точки) и изотермическую выдержку ее до полного распада аустенита. Изотермический отжиг улучшает обрабатываемость резанием и применяется для деталей и заготовок небольших размеров.

2.3.2 Закалка стали

Закалка стали - термическая обработка, включающая нагрев до температур выше верхних критических точек на 30...50°С, выдержку при этих температурах до полного прогрева металла и последующее очень быстрое его охлаждение. В результате закалки в стали из аустенита образуется мартенсит.

Стали с малым содержанием углерода закалить на мартенсит очень трудно, так как начало и конец процесса образования мартенсита происходит в области высоких температур, соответствующих образованию других, более устойчивых структур (троостит, сорбит). Прокаливаемость обыкновенной углеродистой стали распространяется на 5...7 мм.

Микроструктура закаленной стали зависит от ее химического состава и условий закалки (температуры нагрева и режима охлаждения). Закалка стали с содержанием углерода до 0,025...0,03% задерживает выделение третичного цементита по границам зерен и не меняет структуру феррита. Такая закалка повышает пластичность и почти не изменяет прочностных характеристик.

Микроструктура стали с 0,08...0,15% С (с нагревом выше верхних критических точек и охлаждением в воде) представляет собой низкоуглеродистый мартенсит с выделениями феррита. Дальнейшее увеличение содержания углерода (0,15...0,25%) при тех же условиях закалки приводит к повышению твердости с 110...130 НВ до 140...180 НВ, а предел текучести возрастает на 30...50%. Наиболее значительное изменение свойств происходит при содержании углерода более 0,30...0,35%.

Микроструктура доэвтектоидных сталей представляет собой мартенсит, кристаллы которого имеют характерную форму пластин (игл). При содержании углерода более 0,5...0,6% в микроструктуре сталей наблюдается незначительное (2...3%) количество аустенита.

Микроструктура заэвтектоидных сталей состоит из мартенсита, зерен вторичного цементита (не растворившегося при нагреве) и остаточного аустенита. Кристаллы (иглы) мартенсита очень небольших размеров. Повышение температуры закалки вызывает растворение вторичного цементита и способствует росту зерна.

В тех случаях, когда требуются высокая твердость и повышенная износостойкость поверхности при сохранении вязкой и достаточно прочной сердцевины изделия, применяется поверхностная закалка, то есть закалка не на полную глубину. Поверхностной закалке подвергаются стали при содержании углерода более 0,3%. Выбор оптимальной толщины упрочняемого слоя определяется условиями работы детали и составляет от 1,5 до 15 мм (и выше). Площадь сечения закаленного слоя не должна превышать 20% площади всего сечения. В практике наиболее часто используют поверхностную закалку с индукционным нагревом током высокой частоты (ТВЧ).

Мартенситная структура стали после закалки метастабильна и для ее превращения в более устойчивую производят отпуск.

2.3.3 Отпуск стали

Отпуск стали - термическая обработка, включающая нагрев закаленной стали до температуры ниже критических точек, выдержка при этой температуре и охлаждение. В результате отпуска в зависимости от температуры нагрева неустойчивая структура мартенсита закалки в результате диффузионного перераспределения углерода превращается в более устойчивые структуры - мартенсит отпуска, троостит, сорбит и перлит.

Мартенсит отпуска имеет измененную кристаллическую решетку и его образование сопровождается объемными изменениями, выделением теплоты и частичным снятием внутренних напряжении. При более высокой температуре нагрева образуются троостит, сорбит и перлит отпуска, которые в отличие от получаемых из аустенита при непрерывном охлаждении имеют зернистую, а не пластинчатую микроструктуру. Стали с зернистой микроструктурой отпуска характеризуются более высокой пластичностью и лучшей обрабатываемостью резанием.

В зависимости от температуры отпуска различают низкотемпературный (низкий), среднетемпературный (средний) и высокотемпературный (высокий) виды отпуска. Закалка на мартенсит с последующим высоким отпуском называется улучшением стали. Улучшение обеспечивает хороший комплекс свойств (прочность, ударная вязкость, твердость) и применяется для ответственных изделий из среднеуглеродистых сталей (коленчатые валы, шатуны и др. детали).

К основным дефектам, которые могут возникнуть при закалке стали относят трещины и деформацию. Трещины - неисправимый дефект, предупредить который можно конструктивном решением (избегать в изделии конструктивных элементов, которые могут стать концентраторами напряжений) и тщательным соблюдением режимов термообработки. Деформация, то есть изменение размеров и формы изделий, всегда сопровождает процессы термической обработки, особенно закалки. Несимметричную деформацию изделий в практике часто называют короблением (поводкой). Деформацию можно уменьшить подбором соответствующего состава стали и условий термической обработки, а избежать коробления - обеспечив равномерность нагрева под закалку и правильное положение детали при погружении в закалочную среду.

3. Медь и её сплавы. Область применения

3.1 Физические свойства

Металлы подгруппы меди, как и щелочные металлы, имеют по одному свободному электрону на один ион-атом металла. Казалось бы, эти металлы не должны особенно сильно отличатся от щелочных. Но они, в отличие от щелочных металлов, обладают довольно высокими температурами плавления. Большое различие в температурах плавления между металлами этих подгрупп объясняется тем, что между ион-атомами металлов подгруппы меди почти нет “зазоров” и они расположены более близко. Вследствие этого количество свободных электронов в единице объема, электронная плотность, у них больше. Следовательно, и прочность химической связи у них больше. Поэтому металлы подгруппы меди плавятся и кипят при более высоких температурах.

Металлы подгруппы меди обладают, по сравнению с щелочными металлами, обладают большей твердостью. Объясняется это увеличением электронной плотностью и отсутствием “зазоров” между ион-атомами.

Необходимо отметить, что твердость и прочность металлов зависят от правильности расположения ион-атомов в кристаллической решетке. В металлах, с которыми мы практически сталкиваемся, имеются различного рода нарушения правильного расположения ион-атомов, например пустоты в узлах кристаллической решетки. К тому же металл состоит из мелких кристалликов (кристаллитов), между которыми связь ослаблена. В Академии Наук СССР была получена медь без нарушения в кристаллической решетке. Для этого очень чистую медь возгоняли при высокой температуре в глубоком вакууме на глубокую подложку. Медь получалась в виде небольших ниточек - “усов”. Как оказалось такая медь в сто раз прочнее, чем обычная.

Чистая медь обладает и другой интересной особенностью. Красный цвет обусловлен следами растворенного в ней кислорода. Оказалось, что медь, многократно возогнанная в вакууме (при отсутствии кислорода), имеет желтоватый цвет. Медь в полированном состоянии обладает сильным блеском.

При повышении валентности понижается окраска меди, например CuCl - белый, Cu2O - красный, CuCl + H2O - голубой, CuO - черный. Карбонаты характеризуются синим и зеленым цветом при условии содержания воды, чем обусловлен интересный практический признак для поисков.

Медь обладает наибольшей (после серебра) электропроводимостью, чем и обусловлено её применение в электронике.

Медь кристаллизируется по типу централизованного куба (рис 3).

45

Страницы: 1, 2, 3


ИНТЕРЕСНОЕ



© 2009 Все права защищены.