реферат бесплатно, курсовые работы
 

Вытяжная вентиляция птичника

Вытяжная вентиляция птичника

Введение

На животноводческих комплексах промышленного типа, во многих передовых хозяйствах электрофицированны почти все производственные процессы. Используется прогрессивная технология и современные машины. Все больше находят применение новые системы автоматического дистанционного контроля и управления технологическими процессами.

Электрический привод потребляет более двух третей электроэнергии, вырабатываемой в стране. Электропривод сельскохозяйственных машин является основой, на которой базируется комплексная механизация стационарных процессов всех отраслей сельскохозяйственного производства. Опыт эксплуатации животноводческих помещений промышленного типа показывает, что затраты труда на производство молока в 2-3 раза меньше, а число животных одним работником в 1,5-2,5 раза больше, чем на существующих фермах.

Для поддержания оптимального состава воздуха в производственных помещениях необходима систематическая вентиляция с обменом воздуха во всех слоях. В животноводческих помещениях воздух загрязняют выделяемые животными элементы, углекислый газ , сероводород, водяные пары, избыточная теплота, образующийся в помещении аммиак и метан. Неудовлетворительный температурно-влажностный режим и газовый состав воздуха в помещении приводят к снижению яйценоскости кур на 15-20%, а излишняя скорость воздуха, вызывает простудные заболевании.

Интенсификация птицеводства предполагает концентрацию большого поголовья птиц в одном помещении, поэтому без поддержания оптимального уровня микроклимата здесь не обойтись. При этом происходит повышение яйценоскости птиц на 15%, сокращение выбраковки в 2 раза.

Основные цели курсового проектирования являются :

-систематизировать и закрепить теоретические знания и практические навыки по пройденным дисциплинам «электропривод сельскохозяйственных машин», «механизация сельского хозяйства», «инженерная графика», «охрана труда».

-углубить теоретические знания по выбору электропривода вентиляционной установки, для развития профессиональных знаний.

-уметь применять теоретические знания в разработке технологической схемы, схемы электрической расположения в расчете и выборе электропривода вентиляционной установки, силовой сети.

-развить техническую и творческую инициативу, самостоятельность.

-разработать мероприятия по экономии электроэнергии в электроприводе противопожарные мероприятия, мероприятия по электробезопасности и охране труда.

-закрепит методику выбора и проверку пускозащитной аппаратуры электродвигателя, провода и кабеля для питания электроприемеников.

1. Общая характеристика птичника на 10 тыс. голов

Птичник предназначен для содержания кур от 140 дневного возраста с клеточным содержанием.

Размер птичника 96*18*3,8м. Состоит из 2-х изолированных друг от друга залов для содержания кур и подсобных помещений: вытяжной камеры, служебной и инвентарной комнаты, коридоров, гардероба.

На птицеводческих фермах используется клеточное и напольное содержание птиц. Наиболее перспективное клеточное содержание. Куря несушки содержатся в клеточных батареях при искусственном освещении. Птичник оборудован механизированными батареями КБН-1, в в которых имеются механизмы для раздачи кормов, сбора яиц и удаления помета.

Кормление птиц производится кормораздатчиком. Поение птиц осуществляется с помощью скребкового механизма батареи. От батареи помет сбрасывается через люк в полу на транспортер скребковый ТСН-3,0Б, который перегружает его в транспортное средство.

2. Обоснование выбора типа установки

Комплект вентиляционного оборудования «Климат-45» предназначен для создания необходимого воздухообмена в птицеводческих помещениях. В комплект входят низкоаппаратные вентиляторы, позволяющие ступенчато регулировать подачу воздуха.

Комплект «Климат-45» обеспечивает регулирование частоты вращения электроприводов в диапазоне 3:1, автоматический переход на низкую ступень при понижении температуры воздуха в помещении или на высшую ступень при повышении температуры. Так при изменении температуры воздуха автоматический включается и отключается одна из групп вентиляторов. Диапазон регулирования от +5 до +35 0С. Предусмотрено ручное управление вентиляторами, контроль подаваемого напряжения осуществляется сигнальными лампами.

3. Технологическая схема вентиляционной установки в птичнике

Рисунок-1 Технологическая схема вытяжной вентиляции: 1-2 -Вентилятор осевой ВО-7.1; 3-Клапан приточный регулируемый; 4-Вентиляторы приточный крышный или приточная шахта с клапаном;

В комплект вентиляционного оборудования «Климат-45» входят осевые вентиляторы типа ВО-7.1, автоматические выключатели серии АЕ-2000, станция управления вентиляторами ШАП 5701-03-А2Д с панелью первичных преобразователей температуры и автотрансформатором АТ-10. По командам регуляторов температуры изменяется подводимое к электродвигателю вентиляторов через автотрансформатор напряжение и число работающих вентиляторов, вследствие чего изменяется подача вентиляторной установки.

Вентиляторы вытяжной вентиляции разделены на три группы, одна из которых работает постоянно. В зимний период, когда не требуется большого воздухообмена, возможен перепад на нисшую ступень, тоесть работа одной группы вентиляторов, а в летний период года включить остальные группы, если это необходимо для создания нужного воздухообмена.

4. Определение мощности и выбор электродвигателя для привода вытяжной вентиляции

4.1 Расчет мощности и выбор электродвигателя по режиму работы, частоте вращения, типу и исполнению

Вентилятор ВО-7.1 имеет постоянно-продолжительный режим нагрузки, так как нагрузка у вентиляторов всегда одинакова и отключение вентиляторов в птичнике не допустимо, технологический процесс вентиляторов закончен после полного остановки вентиляторов, следовательно, вентилятор будет испытывать продолжительный режим нагрузки.

где ?-кривая нагрева электродвигателя;

?уст- установившаяся температура;

Рн- номинальная мощность;

Для того чтобы определить количество вентиляторов типа ВО-7.1 и мощность двигателя, необходимо знать подачу воздуха обеспечивающего вентилятором, если подача одного вентилятора Qв=11000 м3/ч

Определяем часовой воздухообмен Lв в м3/ч ориентировочно по формуле [4, 54]

Lв=G*Lн (1)

где G=22500 -сумарная масса птиц, кг:

Lн - воздухообмен на 1 кг живой массы, м3:

В зимний период воздухообмен составляет

Lв =22500*1,1=24750 м3/ч

В переходный период воздухообмен составляет

Lв=22500*3,6=81000 м3/ч

В летний период воздухообмен составляет

Lв=22500*5,5=123750 м3/ч

Для определения количества вентиляторов выбираем воздухообмен с наибольшим показателем, т.е при Lв=123750 м3/ч. Количество вентиляторов определяется по формуле [5, 150]

N= Lв/Qв (2)

где Qв=11000 - подача одного вентилятора типа ВО-7.1, м3/ч

N=123750/11000=11,25 штук

Выбираю 12 вентиляторов ВО-7.1

Определяем расчетное давление Н (Па)

Н=Y?2/2*(?l/d+??) (3)

где Y=1,2 - плотность воздуха, кг|м2;

?=12 - скорость движения воздуха в трубе, м|с;

?=0,02 - коэффициент трения в трубе;

l - длина воздуховода, м;

??- сумма коэффициентов местных сопротивлений;

d=0,75 - внутренний диаметр трубы, м;

Н=1,2*122/2(0,02*0,7/0,75+0,29)=26,7 Па

Определяем расчетную мощность электропривода Ррасч в кВт для вентилятора по формуле [4, 56]

Ррасч=Qв*H/(3,6?в?п) (4)

где Qв - подача вентилятора, м3|ч;

?в=0,25 - к.п.д. вентилятора;

?п=1 - к.п.д. передачи;

Ррасч=11000*26,7/(3,6*106*0,25*1)=0,35 кВт

Номинальную мощность двигателя выбирают по условию [4, 56]

Р?Ррасч*Кз (5)

где Кз=1,1 - коэффициент запаса;

Рн?Р=1,1*0,35=0,4 кВт

Рн=0,55 кВт

Выбираем электродвигатель АИР71В6У3

Таблица 1 - технические характеристики двигателя

Марка

4АПА80А6У2

Мощность при номинальной нагрузке, кВт

0,55

Частота вращения при номинальной нагрузке, об|мин

930

Сила тока статора при номинальной нагрузке, А

2,1

КПД, %

67,5

Коэффициент мощности

0,7

Кратность пускового тока

4

Кратность пускового момента

2

Кратность максимального момента

2,2

Кратность минимального момента

1,8

4.2 Проверка выбранного двигателя по нагреву, перегрузочной способности и по условиям пуска.

По условиям нагрева должно соблюдаться условие

Рн ? Ррасч (6)

где Рн - номинальная мощность двигателя, кВт;

Ррасч=0,35 - расчетная мощность, кВт;

0,55 ? 0,35

По условии пуска перегрузки должно соблюдаться условие

Мн?Мпер (7)

где Мн - номинальный момент электродвигателя, Н*м;

Мпер -номинальный момент по условии перегрузки, Н*м;

Определяем номинальный момент электродвигателя, Н*м;

Мн=9550*Рн/n (8)

где Рн - номинальная мощность двигателя, кВт;

n - частота вращения двигателя, мин-1;

Мн=9,55*550/930=5,6 Н*м

Номинальный момент по условию перегрузки

Мпер=Мс/0,75* Кmax, (9)

где Мс - статический момент уставки, Н*м;

Кmax - кратность максимального момента;

Статический момент уставки по формуле [3, 134]

Мс=9,55 Ррасч/nн (10)

где Ррасч=350 Вт - расчетная мощность;

Мс=9,55*350/930=3,5 Н*м

Мпер=3,5/0,75*2,2=2,1 Н*м

5,6 ? 2,1

Следовательно условия соблюдаются

Проверяем электродвигатель по условиям пуска с учетом условия

Мн?Мн.п (11)

где Мн.п. - номинальный момент при пуске, Н*м;

Определяем номинальный момент при пуске

Мн.п=1,25*Мс/(Кmin*u2) (12)

где Кmin =1,8 - кратность минимального момента электродвигателя;

u=0,925 - напряжение на зажимах электродвигателях с учетом его отключения во время пуска в относительных единицах.

Мн.п=1,25*3,5/(1,8*0,952)=2,9 Н*м

5,6 ? 2,9

Следовательно выбранный электродвигатель выбран правильно

6 Расчет механической характеристики и продолжительности пуска электропривода вытяжной вентиляции

Определяем моменты двигателя:

Пусковой момент Мп в Н*м

Мп=Мн*Кп (13)

где Кп=2 - кратность пускового момента;

Мн=5,6 - номинальный момент, Н*м;

Мп=5,6*2=11,2 Н*м

Рассчитываем максимальный момент, Н*м;

Мmax=Kmax*Mн (14)

где Kmax=2,2 - кратность максимального момента;

Mн - номинальный момент;

Мmax=2,2*5,6=12,32 Н*м

Рассчитываем минимальный момент, Н*м

Мmin=Kmin*Мн (15)

где Kmin=1,8 - кратность минимального момента;

Мн - номинальный момент, Н*м;

Мmin=1,8*5,6=10,08 Н*м

Определяем номинальное скольжение Sн по формуле [2. 89]

Sн=(n0-nн)/n0 (16)

где n0 - начальная частота вращения ротора, об/мин;

nн=930 - номинальная частота вращения ротора, об/мин;

n0=60f/p (17)

где f=50 - частота сети, Гц;

р - число пар полюсов;

n0=60*50/3=1000 об/мин

Sн=(1000-930)/930=0,075

Определяем критическое скольжение по формуле [2. 90]

Sк=Sн(Кк+) (18)

где Кк=2,2 - кратность максимального момента;

Sк=0,075(2,2+)=0,31

Определяем поправочный коэффициент

?=(1/Sk+Sk-2M1)/2(M1-1) (19)

где Sk - критическое скольжение, Н*м;

М1=Kmax/Ki=1,1 - приведенный момент;

?=(1/0,31+0,31-2*1,1)/2(1,1-1)=6,6

Рассчитываем моменты при снижении напряжения в сети на 10% ;

Мi|=0,81*Мi (20)

Мн|=0,81*5,6=4,53 Н*м

Мп|=0,81*11,2=9,07 Н*м

Мmax|=0,81*12,32=9,97 Н*м

Мmin|=0,81*10,08=8,16 Н*м

По упрощенной формуле Клосса определяем рабочий участок механической характеристики

М=2Мmax/(S/Sk+Sk/S) (21)

где S - скольжение;

Sk - критическое скольжение;

Мmax=12,32 - максимальный момент, Н*м;

Таблица 2 - Расчетные данные для построения механической характеристики двигателя

Расчетные данные

Значение скольжения

Sk

0,1

0,15

0,18

0,22

0,28

0,42

0,48

S/Sк

0,24

1

0,32

0,48

0,58

0,7

0,9

1,3

1,5

Sк/S

4,13

1

3,1

2

1,7

1,4

1,1

0,7

0,6

S/Sк+Sк/S+2* ?

17,57

15,2

16,6

15,68

15,48

15,3

15,2

15,2

15,3

М, Н*м

5,6

12,32

7,2

9,9

11

11,7

12,32

12,32

11,7

1-S

0,925

0,69

0,9

0,85

0,82

0,78

0,72

0,58

0,52

?=?0(1-S)

96,125

72,45

94,5

89,25

86,1

81,9

75,6

60,9

54,6

М|, Н*м

4,5

9,9

5,8

8

8,91

9,4

9,9

9,9

9,4

Расчет моментов двигателя в Н*м

S=0,1

S/Sк=0,1/0,31=0,32

Sк/S=0,31/0,1=3,1

S/Sк+Sк/S+2* ? =0,31/0,1+0,1/0,31+2*6,6=16,6

М=2Мmax/(S/Sk+Sk/S)=2*12,32/(0,1/0,31+0,31/0,1)=7,2 Н*м

Мi|=0,81*Мi=0,81*7,2=5,8 Н*м

?=?0(1-S)=105*(1-0,1)=94,5 рад/с-1

5.1 Расчет механических характеристик рабочей машины

Рассчитывают статический момент, Н*м

Мс=М0+(Мс.н-М0)*(?/?н)х (22)

где Мс - момент сопротивления механизма при скорости ?м , Н*м;

М0 -начальный момент сопротивления на приводном валу, Н*м;

Мс.н, - момент сопротивления при номинальной угловой скорости, Н*м;

Х=2 - показатель степени, характеризующий изменение момента сопротивления при изменении угловой скорости.

М0=0,3*Мс.н (23)

М0=0,3*5,6=1,68 Н*м

Таблица 3 - расчетные данные для построения механической характеристики рабочей машины.

Расчетная величина

Значение скольжения

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

?=?0(1-S)

97,125

94,5

84

73,5

63

52,5

42

31,5

21

10,5

0

Мс , Н*м

3,5

3,4

3,2

3

2,8

2,6

2,4

2,2

2

1,8

1,6

5.2 Построение механических характеристик и определение продолжительности пуска электродвигателя

Рассчитываем момент инерции J, кг*м2;

J=FJJдв (24)

где FJ=3,1 - коэффициент инерции производственного механизма, кг*м2;

Jдв=0,00203 - момент инерции двигателя, кг*м2;

J=0,00203*3,1=0,00629 кг*м2

Рассчитывают время разгона для каждого участка, t [2 , с 121]

Страницы: 1, 2


ИНТЕРЕСНОЕ



© 2009 Все права защищены.