реферат бесплатно, курсовые работы
 

Исследование влияния режимных факторов прессования древесностружечной плиты на разбухание

В-план для трех варьируемых факторов в нормализованных обозначениях представлен в таблице 3.1

Таблица 3.1

Номер опыта

x1

x2

x3

y

1

+1

+1

+1

y1

2

+1

+1

1

y2

3

+1

1

+1

y3

4

+1

1

1

y4

5

1

+1

+1

y5

6

1

+1

1

y6

7

1

1

+1

y7

8

1

1

1

y8

9

+1

0

0

y9

10

1

0

0

y10

11

0

+1

0

y11

12

0

1

0

y12

13

0

0

+1

y13

14

0

0

1

y14

В-план для трех варьируемых факторов в натуральных обозначениях представлен в таблице 3.2

Таблица 3.2

Номер опыта

x1

x2

x3

y

1

180

13

20

2

180

12

10

3

180

7

20

4

180

7

10

5

160

13

20

6

160

13

10

7

160

7

20

8

160

7

10

9

180

10

15

10

160

10

15

11

170

13

15

12

170

7

15

13

170

10

20

14

170

10

10

Глава 4. Проверка нормальности распределения выходной величины

Результаты предварительной серии опытов представлены в таблице 4.1

Таблица 4.1

9,342

9,199

9,356

9,221

9,303

9,224

9,324

9,84

9,495

9,085

9,439

10,07

8,718

9,606

9,651

9,583

10,192

9,818

9,501

9,208

9,931

9,839

9,562

9,553

10,657

10,115

9,7

9,965

10,007

9,642

10,054

8,111

9,775

9,992

8,482

9,323

10,019

9,664

9,213

9,898

9,253

11,085

9,039

8,962

9,418

9,596

9,611

8,921

9,183

9,946

9,941

9,909

9,714

9,365

9,47

9,567

8,959

9,239

9,179

9,043

Разобьем диапазон от 8,111 до 11,085 на интервалы равной длины. Для определения числа интервалов k воспользуемся формулой:

k = 1 + 3,2ln n, (4.1)

где n - объем выборки.

Значение k, найденное по формуле, округляем до ближайшего целого.

k = 1 + 3,2ln 60 7.

Длина каждого интервала:

(4.2)

Предполагается, что выходная величина подчиняется нормальному закону распределения. Это предположение можно проверить разными способами. Наиболее строгим из них является применение критерия ч2 Пирсона. Для этого необходимо иметь выборку достаточно большого объема: n > 50 - 150. Диапазон изменения выходной величины в этой выборке разбивается на l интервалов так, чтобы эти интервалы покрывали всю ось от - до + и в каждый интервал при этом попало не менее пяти значений выходной величины. Подсчитывают количество mi наблюдений, попавших в каждый интервал. Затем вычисляют теоретические попадания случайной величины в каждый i-й интервал. Для этого используют формулу

pi = Ф(z2) - Ф(z1), где (4.3)

z1 = (- ) / s; z2 = ( - ) / s;

где - среднее арифметическое выборки; s - среднее квадратическое отклонение выборки; - нижняя граница i-го интервала; - верхняя граница i-го интервала; Ф(z) - нормированная функция Лапласа:

Ф(z) =

Значения ее для z = z1 и z = z2 определяют из таблиц. При отыскании значений этой функции для отрицательных значений аргумента следует иметь в виду, что функция Ф(z) нечетная:

Ф(- z) = - Ф(z).

Следующим этапом является вычисление величины ч2 по формуле

ч2 = . (4.4)

По выбранному уровню значимости q и числу степеней свободы k = l - 3 из таблицы отыскивают . Гипотезу о нормальности распределения можно принять, если .

Вычисления удобно вести заполняя таблицу:

Таблица 4.2

№ интервала

mi

z1

z2

Ф(z1)

Ф(z2)

pi

pin

1

2

3

4

5

6

7

8

9

10

11

12

1

8,111

8,537

2

-2,19

-2,06

0,014

0,019

0,005

0,3

2,89

9,633

2

8,537

8,963

3

-2,06

-1,18

0,019

0,119

0,1

6

9

1,5

3

8,963

9,389

19

1,18

-0,3

0,119

0,382

0,263

15,78

10,3684

0,657

4

9,389

9,815

18

-0,3

0,58

0,382

0,719

0,337

20,22

4,9284

0,244

5

9,815

10,241

16

0,58

1,46

0,719

0,927

0,208

12,48

12,3904

0,993

6

10,241

10,667

1

1,46

2,34

0,927

0,990

0,063

3,78

7,7284

2,045

7

10,667

11,093

1

2,34

3,22

0,990

0,999

0,009

0,54

0,2116

0,392

Данные выборки разобьем на 7 интервалов, границы которых указаны во втором и третьем столбцах. В четвертом столбце приведено количество наблюдений, попавших в каждый интервал. Далее по данным таблицы 4.1

вычислены среднее и стандарт s выборки.

= =

=

=

=

=

= 9,535

Среднее квадратическое отклонение:

%

По формулам 4.3 рассчитываем значения z1 и z2 для каждого интервала (пятый и шестой столбец таблицы 4.2)

По таблице находим нормированную функцию Лапласа:

Согласно формуле (4.3) вычисляем теоретическое попадание случайной величины в каждый i-й интервал:

Искомую величину получают суммированием значений последнего столбца . Выберем уровень значимости q = 0,05, число степеней свободы k = 7-3 = 4. По найденным величинам q и k из таблицы отыскиваем - гипотеза о нормальности распределения отвергается.

Определение параметров генеральной совокупности

Математическое ожидание My определяется по формуле

Уровень значимости q = 1-P = 1 - 0,95 = 0,05

Число степеней свободы f = n - 1 = 60 - 1 = 59

Распределение Стьюдента tqf = 2,00

Глава 5. Расчет необходимого числа параллельных опытов

Исходными данными для этого расчета служат результаты серии опытов представлены в таблице 5.1

Таблица 5.1

9,342

9,199

9,356

9,221

9,303

9,224

9,324

9,84

9,495

9,085

9,439

10,07

8,718

9,606

9,651

9,583

10,192

9,818

9,501

9,208

9,931

9,839

9,562

9,553

10,657

10,115

9,7

9,965

10,007

9,642

10,054

8,111

9,775

9,992

8,482

9,323

10,019

9,664

9,213

9,898

9,253

11,085

9,039

8,962

9,418

9,596

9,611

8,921

9,183

9,946

9,941

9,909

9,714

9,365

9,47

9,567

8,959

9,239

9,179

9,043

Пусть требуется найти минимальное число n повторений опытов, при котором среднее арифметическое , найденное по этой выборке, отличалось бы от математического ожидания не более, чем на заданную величину ?. Для ее решения необходимо знать оценку дисперсии s2. Искомое значение n определяется по формуле

(5.1)

Величину t отыскивают из таблицы при уровне значимости q и числе степеней свободы f, связанном с оценкой дисперсии s2.

Глава 6. Обработка результатов эксперимента

Страницы: 1, 2, 3


ИНТЕРЕСНОЕ



© 2009 Все права защищены.