реферат бесплатно, курсовые работы
 

Испытательная станция турбовинтовых двигателей ТВ3–117 ВМА–СБМ1 серийного производства

- должно быть предусмотрено шумоглушение, ограничивающее распространение шума за пределами бокса;

- обеспечены противопожарные нормы, требования промсанитарии и техники безопасности.

4.2 Типы боксов

Испытательный бокс состоит из входной шахты с оборудованием для шумоглушения, центральной части, включающей в себя испытательную кабину, стенд и шахты выхлопа в которую входит эжектор, щиты шумоглушения и жалюзи, предохраняющие от попадания атмосферных осадков внутрь канала.

Боксы отличаются друг от друга различным расположением входной и выходной частей.

Нашли применение боксы 4-х типов:

1. С горизонтальной входной и выходной частями;

2. С вертикальной входной частью и горизонтальной выходной;

3. С горизонтальным входом и вертикальной выходной частью;

4. С вертикальными входной и выходной частями.

Каждый из выше перечисленных вариантов имеет достоинства и недостатки, основными из которых являются:

1. С горизонтальной входной и выходной частями или прямоточный бокс.

Достоинства:

- обеспечение равномерного потока воздуха на входе;

- более простая и дешевая конструкция;

- простой доступ для проведения регламентных работ.

Недостатки:

- необходимость организации защитной зоны перед шахтой всасывания;

- поддержание защитной зоны перед шахтой всасывания;

- поддержание защитной зоны в соответствующем порядке для недопущения нападения посторонних предметов в ГВТ ГТД;

- нерациональное использование производственных площадей, шумоглушение менее эффективно;

- мощная струя выхлопа предполагает наличие защитной зоны и отбойника;

- токсичные продукты выхлопа плохо рассеиваются и создают угрозу здоровью людей;

- требуется наличие значительной санитарной зоны за выхлопом, что не позволяет размещать другие производственные объекты и приводит к нерациональному использованию производственных площадей.

2. С горизонтальной входной и вертикальной выходной частями или Г-образный стенд.

Достоинства:

- экономия производственных площадей;

- струя выхлопа направлена вверх;

- токсичные продукты сгорания топлива рассеиваются более интенсивно на высоте, что снижает уровень ПДК;

- основной шумовой фон направлен вверх и представляет меньшую угрозу здоровью персонала;

- допустима санитарная зона с общепромышленными параметрами.

Недостатки:

- конструктивно более сложный и дорогостоящий;

- затруднено регламентное обслуживание бокса.

3. С вертикальной входной и горизонтальной выходной частями или Г-образный стенд.

Достоинства:

- воздушный поток менее загрязнен, т.к. забор его осуществляется на высоте от земли;

- меньшая вероятность попадания посторонних предметов в ГВТ ГГ;

- экономия производственных площадей;

- основной шумовой фонд отражен вверх и не создает угрозы здоровью людей.

Недостатки:

- конструктивно более сложный и дорогостоящий;

- необходимо оборудование для разворота воздушного потока или специальное строительное решение этого вопроса;

- затруднено регламентное обслуживание.

4. С вертикальной входной и выходной частями или П-образный стенд.

Достоинства:

- воздушный поток менее загрязнен, т.к. забор его осуществляется на высоте от земли;

- меньшая вероятность попадания посторонних предметов в ГВТ ГГ;

- экономия производственных площадей;

- основной шумовой фон отражен вверх и не создает угрозы здоровью людей;

- токсичные продукты сгорания топлива рассеиваются на высоте, что снижает уровень ПРД;

- допустима санитарная зона с общепромышленными параметрами.

Недостатки:

- конструктивно более сложный и дорогостоящий;

- затруднено регламентное обслуживание бокса.

а) С горизонтальной входной и выходной частями (прямоточный стенд).

б) С горизонтальной входной и вертикальной выходной частями

(Г-образный стенд).

1. Шторные ворота.

2. Щиты шумоглушения на входе.

3. Бокс.

4. Испытуемый двигатель.

5. Вертикальная шахта выхлопа.

6. Щиты шумоглушения с адсорбирующими веществами.

) С вертикальной входной и горизонтальной выходной частями

(Г-образный стенд).

1. Щиты шумоглушения на входе.

2. Жалюзи.

3. Направляющие лопатки.

4. Бокс.

5. Испытуемый двигатель.

6. Щиты шумоглушения на выходе.

7. Отбойная сетка

г) С вертикальной входной и выходной частями (П-образный стенд).

1. Щиты шумоглушения на входе.

2. Жалюзи.

3. Направляющие лопатки

4. Бокс.

5. Испытуемый двигатель.

6. Вертикальная шахта выхлопа.

7. Щиты шумоглушения с адсорбирующими веществами.

Для выхлопной части бокса следует считать лучшим горизонтальное расположение, так как оно позволят осуществить шумоглушение с меньшими строительными затратами, а отсутствие поворотов на пути движения газа снижает противодавление выхлопа. Однако бокс при этом требует большой строительной площади, а отработанные газы хуже рассеиваются. Поэтому, несмотря на удорожание строительства, выхлопную часть нередко делают вертикальной.

Для всасывающей шахты лучше вертикальное расположение, обеспечивающее подачу более чистого воздуха (без песка и пыли) особенно при ветре. Г-образные боксы облегчают строительную компоновку нескольких боксов с помещениями вспомогательных служб.

Шумоглушение во всасывающей и выхлопной частях бокса осуществляются с помощью пористых материалов. Во всасывающей части применяются мягкие (часто органические) материалы частицы которых в случае попадания в двигатель не повреждают его проточную часть. На выхлопе, где газы имеют высокую температуру, используют пористую керамическую крошку, стекловолокно и минеральную шерсть.

Проходные площади частей бокса определяются исходя из допустимых потерь давления на входе (до 100-150 мм. вод. ст.) и выходе (до 200-300 мм.вод.ст.) и скорости обдува двигателя (до 10 м/с). Большие скорости воздуха в центральной части бокса могут вызвать ощутимую неравномерность распределения статических давлений по внешнему контуру двигателя, что приведет к появлению дополнительных аэродинамических сил и, как следствие, к ошибкам измерения силы тяги.

Если размеры бокса оказываются малы и не позволяют создать требуемые скорости обдува двигателя, то определяются поправки на измерение силы тяги. У одного и того же экземпляра двигателя снимается дроссельная характеристика в боксах малого и нормального размеров, где заведомо пренебречь влиянием обдува на силу тяги двигателя, полученные в разных боксах, при одинаковых приведенных частотах вращения.

Расход воздуха через помещение складывается из расхода через двигатель и расхода, эжектируемого реактивной струей. Для обеспечения оптимального расхода эжектируемого воздуха, достаточного для снижения температуры выхлопных газов и не вызывающего в измерении силы тяги, выхлопную струю заключают в эжекторную трубу, размеры которой определяются из теории турбулентных струй так, чтобы на высокотемпературных режимах работы двигателя температура газов в районе глушителей не превосходила максимально допустимую по жаропрочности конструкционных шумоглушащих материалов 300-350 град\цельс.

Испытуемый двигатель монтируется на силоизмерительном устройстве, установленном на железобетонном фундаменте, чтобы колебания, вызванные работой двигателя, не передавались стенам бокса, фундамент станка устанавливают на вибропоглощающую подушку, от строительных конструкций, а его глубина залегания выбирается большей, чем стен.

Расположение двигателя в боксе над уровнем пола обычно делают приподнятым (приблизительно на 2м). Это устраняет попадание в двигатель пыли с пола и облегчает обслуживание испытательного оборудования.

5/ Выбор и обоснование типа и конструкции испытательного бокса

Данная испытательная станция размещается в центре города, поблизости находятся жилые комплексы, природные условия нормальные, по этому выбираем П-образную конструкцию испытательного стенда.

6/ Аэродинамический расчет бокса

Расчет бокса ведется для определения скоростей газового потока в сечениях бокса.

Полученные результаты сравнивают со скоростями, необходимыми для обеспечения ламинарности потока. И на основании этих сравнений делается заключение о возможности использования этого бокса для данного типа двигателя. Разрезы бокса показаны на рисунке 2.

1-на входе, 2-перед двигателем, 3-возле двигателя, 4-за двигателем, 5-на выходе

-в шахте входа - F1=7.4 x 7.25=53.65мІ;

-перед двигателем - F2=7.7 x 7.15=55.06мІ;

-возле двигателя - F3=F2=55.06мІ;

-в шахте вихлопа - F4=3.14 x 2.295І/4=4.13мІ;

F5=5.8 x 5.8=33.64мІ.

Начальные данные для аэродинамичного расчета:

максимальный расход воздуха двигателя Gдв=9 кг/сек;

плотность воздуха п=1.1 кг/мі;

плотность выхлопных газов г=1.4 кг/мі.

6.1 Нахождение площади разреза бокса

Нахождение площади разреза в шахте входа:

; мІ

Нахождение площади разреза перед двигателем:

; мІ

Нахождение площади разреза возле двигателя:

; мІ

Нахождение площади разреза в шахте вихлопа:

Скорость потока в шахте вихлопа обозначается в наименьшем разрезе шахты:

мІ

мІ

Так как площадь S4 меньше, чем площадь S5, то скорость потока необходимо определять в площади S4.

6.2 Нахождение расхода воздуха и газа в площадях разреза бокса

Нахождение расхода воздуха в шахте входа:

где Gеж - часть воздуха, которая засасуется эжектором в шахту вихлопа;

Gдв. - расход воздуха двигателем

кг/сек.

кг/сек

Нахождение расхода воздуха перед двигателем:

кг/сек

Нахождение расхода воздуха возле двигателя:

кг/сек

Нахождение расхода воздуха в шахте вихлопа:

кг/сек

6.3 Нахождение скоростей потока воздуха и газов в площадях разреза бокса

Нахождение скоростей потока воздуха в шахте входа:

м/сек

Нахождение скоростей потока воздуха перед двигателем:

м/сек

Нахождение скоростей потока воздуха возле двигателя:

м/сек

Нахождение скоростей потока воздуха в шахте вихлопа:

м/сек.

Таким образом, во всех сечениях бокса скорость движения воздуха не превышает допустимую, что полностью удовлетворяет требованиям и позволяет проводить испытания двигателя в данном боксе.

7. Тепловой расчет двигателя

Начальные данные:

Ne=2800 л.с.=2058 кВт - мощность, кВт (л. с.);

Т*3=1250 К - температура газа перед турбиной, єС (єК);

p*к=12 - степень повышения давления;

V=0 - скорость полета, м/с;

H=0 - высота полета, м;

p0=1.033 кг/см2=0.1 МПа

Т0=288 К

о0 вх.=0.05

е=0.98

н=0.97

?3=0,98

Нв=10500 ккал/кг - теплотворность топлива, Дж/кг (ккал/кг);

Са=150 м/с - скорость воздуха на выходе, м/с

Входное устройство

Температура воздуха Т1 и его давление Р1 на входе в компрессор

кг/см2=0.089 МПа (2.1)

К (2.2)

Удельный вес воздуха

кг/м3 (2.3)

где R - газовая постоянная кг·м/кг·град.

Компрессор

Полное адиабатическое давление компрессора:

кгм/кг (2.4)

Для осевого компрессора при заданных зАД*=0,85 и зМ*=0,99 определяем работу:

кгм/кг (2.5)

Принимаем скорость на выходе из последней ступени компрессора С2=150 м/с и определяем температуру и давление воздуха на выходе из компрессора:

К (2.6)

Статическая температура на выходе из компрессора:

К (2.7)

Полное и статическое давление на выходе:

кг/см2=1,2396 МПа (2.8)

кг/см2=1.165 МПа (2.9)

где к =1,4 показатель адиабаты

кг/см4 (2.10)

Камера сгорания

Теоретически необходимое количество воздуха для сгорания 1 кг топлива

L0=14.8 кг /кг топлива.

Вычисляется средняя удельная теплоёмкость «чистых» продуктов сгорания и воздуха для температурного интервала 288 К -1250К

ккал кг/град (2.11)

ккал кг/град (2.12)

Для температурного перепада Т*2= К Т*3=1250 К

ккал кг/град (2.13)

Необходимый коэффициент избытка воздуха

(2.14)

Газовая постоянная продуктов горения

кг м/кг град (2.15)

Полное давление

кг/см2=1.178 МПа (2.16)

где - коэффициент гидравлического расхода в камере сгорания

Среднее значение показателя адиабаты продуктов сгорания принимаем k'=1.32

Ориентировочно оцениваем температуру конца расширения в двигателе:

К (2.17)

Средние удельные теплоёмкости для «чистых» продуктов сгорания и воздуха в интервале ТВ=692.93 К Т*3=1250 К

ккал кг/град (2.18)

ккал кг/град (2.19)

Средняя удельная теплоемкость действительных продуктов сгорания:

(2.20)

Действительное значение показателя адиабаты продуктов сгорания:

(2.21)

Это значение близко к принятому, поэтому дальнейший перерасчет не нужен.

Турбина.

Адиабатический перепад в турбине. Чтобы предать на винт максимальную мощность, газ в турбине должен расширится практически до атмосферного

ккал/кг (2.22)

p4=p0=1.033 кг/см2 (2.23)

Степень расширения газа в турбине:

(2.24)

Температура газа на выходе из турбины:

К (2.25)

Статическая температура:

К (2.26)

Работа на валу турбины:

кгм/кг (2.27)

Вычисление основных данных двигателя

Приняв к.п.д. редуктора зред=0.96 находим удельную эффективную мощность двигателя:

л.с./кг_в-ха (2.28)

Расход воздуха:

кг/с (2.29)

Расход газа через турбину:

кг/с (2.30)

Удельный эффективный расход топлива:

кг/л.с. час (2.31)

Часовой расход топлива:

кг/час (2.32)

Вычисляем реактивную тягу PR которая производится только за счет скорости газа за турбиной:

кг=5480 Н (2.33)

Принимается в=1.1 и находится эквивалентная мощность двигателя:

л.с. (2.34)

Эквивалентный удельный расход топлива:

кг/э.л.с.час (2.35)

Удельный расход топлива:

кг/кг_тяги_час (2.36)

8. Выбор систем шумоглушения. Расчет эффективности шумоглушения

Современные испытательные боксы имеют сложные шумоглушащие устройства. Эти устройства должны удовлетворять ряду требований, главными из которых являются: снижение шума испытуемого двигателя до необходимых в каждом конкретном случае уровней и обеспечение неизменности параметров испытуемых двигателей. Последнее требование особенно важно для двигателей с большими расходами воздуха, так как оно является часто определяющим при решении вопроса о пригодности того или другого типа глушителя.

Все эти задачи по-разному решаются для различных типов двигателей.

Система состоит из глушителей шахты всасывания и подсоса, двухступенчатого эжектора и вертикального глушителя выхлопа, называемого секционным вертикальным. Глушитель состоит из горизонтальной и вертикальной частей. Горизонтальная часть представляет собой эжектор (эжекторная труба) или их систему.

К верхней части цоколя крепят выравнивающую решетку, обеспечивающую необходимое гидравлическое сопротивление. Изменяя величину гидравлического сопротивления, подбирают необходимый коэффициент эжекции, т. е. количество подсасываемого воздуха.

На цоколе устанавливают цанги (секции), образующие вертикальную шахту. Число их определяется необходимым числом рядов звукопоглотителей. В верхней части и в середине шахты имеются две рамы с обрешеткой.

Размещение крюков соответствует плотности подвески звукопоглотителей. На крюки в виде гирлянд подвешивают звукопоглотители. В каждом ярусе их бывает 3--4. Вертикальную часть глушителя устанавливают на фундамент и крепят к анкерным болтам. Глушители такого вида имеют диаметр 1,5--7 м. Звукопоглотитель для такого типа глушителей показан на рис. 69. Он представляет собой цилиндр из сетки, соединенной внахлестку точечной сваркой. Сетка имеет размер ячейки 1,4X1,4 мм, ее изготовляют из нержавеющей стальной проволоки диаметром 0,65 мм. Внутри цилиндра проходит стержень, оканчивающийся крюками. К стержню приварены крышки, которые соединяются с сеткой, внутренний объем заполняют мелкофракционным керамзитом. Диаметр звукопоглотителя обычно принимают 200мм, длину--1000 мм. Такие размеры являются оптимальными как по технологическим требованиям, связанным с размерами заготовок, так и по акустической эффективности. Конструкция звукопоглотителей надежно работает в условиях до +400°С газа, воздействия воды, пара, вибраций, и потока газа.

Существуют и другие схемы боксов и глушителей. Некоторые боксы для испытания газотурбинных двигателей с винтом (турбовинтовых) имеют Г-образную форму или представляют собой горизонтальный канал. В шахте на стороне выхлопа подвешивают щитовые или цилиндрические звукопоглотители. Различие между звукопоглотителями стороны всасывания и выхлопа боксов турбовинтовых двигателей заключается в материале, которым заполнена конструкция. На стороне всасывания используют материалы, не запыляющие бокс, в то время как на стороне выхлопа могут, применены более грубые и дешевые материалы. Боксы, в которых испытывают турбовинтовые двигатели, имеют большие габариты, так как воздушный винт двигателя, например, самолета ИЛ-18, прокачивает через бокс около 1000 м3 воздуха за 1 с. Габариты бокса и тип глушителей выбирают на основании гидравлического и акустического расчетов. Аналогично подбирают глушители для других газодинамических установок, работающих с открытой газовой струей.

8.1 Расчет требуемой эффективности устройств шумоглушения и выбор глушителей

От шума испытательных станций, лабораторных и экспериментальных стендов, где проводятся испытания реактивных двигателей, защищают жилые районы или отдельные здания, находящиеся за пределами территории

предприятий, а также здания и объекты с нормируемым уровнем шума, расположенные па заводских территориях (производственные корпуса, конструкторские бюро, вычислительные центры, административные здания и т.п.).

Устройства шумоглушения должны снижать шум до допустимых уровней при наиболее неблагоприятном сочетании источника шума и защищаемого района или объекта, которыми могут оказаться не только жилые дома, но и производственные корпуса, в которых размещены рабочие места с нормируемым уровнем шума.

Допустимый уровень звуковой мощности источника шума определяют по формуле:

где -- затухание шума в атмосфере, дБ/км; определяется по табл. 2

Таблица 8.1 - Значение затухания шума в атмосфере

Среднегеометрические частоты, Гц

63

125

250

500

1000

2000

4000

8000

Затухание шума , дБ\км……..

0

0,7

1,5

3

6

12

24

48

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11


ИНТЕРЕСНОЕ



© 2009 Все права защищены.