реферат бесплатно, курсовые работы
 

Исполнительные механизмы автоматических систем

Исполнительные механизмы автоматических систем

103

Дипломная работа

Исполнительные механизмы автоматических систем

ТЭФ

Содержание

  • Введение
    • 1. Классификация исполнительных механизмов
    • 2. Электрические исполнительные механизмы
    • 2.1 Общие сведения
    • 2.2 Классификация
    • 2.3 Конструкции электрических исполнительных механизмов
    • 3. Гидравлические исполнительные механизмы
    • 3.1 Общие сведения
    • 3.2 Классификация
    • 3.4 Конструкции гидравлических исполнительных механизмов
    • 4. Пневматические исполнительные механизмы
    • 4.1Общие сведения
    • 4.2 Классификация
    • 4.3 Конструкции пневматических исполнительных механизмов
    • 5. Лабораторная работа
    • Заключение
    • Литература

Введение

В современной жизни человека механизмы и машины играют важную роль. Они широко применяются в народном хозяйстве, промышленности, сельском хозяйстве, специальных областях техники, медицине, космической промышленности, быту и т.д.

С каждым днем увеличивается потребность в машинах и механизмах для многих устройств автоматики, телемеханики, связи, промышленной электроники, счетно-решающей и измерительной техники, предметов повседневного спроса.

В автоматических линиях, в промышленных работах, в приборах измерения и управления применяется большое число управляемых и неуправляемых исполнительных механизмов.

1. Классификация исполнительных механизмов

Исполнительный механизм - 1) устройство, выполняющее непосредственно требуемую технологическую операцию;

2) механизм автоматической системы регулирования, осуществляющий в соответствии с сигналами механическое воздействие на объект регулирования.

Рисунок 1.1 - Классификация исполнительных механизмов

Исполнительные механизмы, применяемые в системах автоматически, очень разнообразны. Классификация производится в первую очередь по виду энергии, создающей усилие (момент) перемещения регулирующего органа. Соответственно, исполнительные механизмы бывают пневматические, гидравлические и электрические, механические и комбинированные.

По конструкции различают электродвигательные, электронные, электромагнитные, поршневые, мембранные и комбинированные исполнительные механизмы.

В пневматических исполнительных механизмах усилие перемещения создается за счет давления сжатого воздуха на мембрану, поршень или сильфон; давление обычно не превышает 10і кПа. В гидравлических исполнительных механизмах усилие перемещения создается за счет давления жидкости на мембрану, поршень или лопасть; давление жидкости в них находится в пределах (2,5 - 20) 10і кПа.

Отдельный подкласс гидравлических исполнительных механизмов составляют исполнительные механизмы с гидромуфтами.

Пневматические и гидравлические мембранные и поршневые исполнительные механизмы подразделяются на пружинные и беспружинные В пружинных исполнительных механизмах усилие перемещения в одном направлении создается давлением в рабочей полости исполнительного механизма, а в обратном направлении - силой упругости сжатой пружины. В беспружинных исполнительных механизмах усилие перемещения в обоих направлениях создается перепадом давления на рабочем органе механизма.

По характеру движения выходного элемента большинство исполнительных механизмов подразделяются на: прямоходные с поступательным движением выходного элемента, поворотные с вращательным движением до 360° (многооборотные).

Управление исполнительными механизмами осуществляется, как правило, через усилители мощности. Помимо того, непосредственно к исполнительным механизмам может подводиться энергия от дополнительного источника, т.е. используются одновременно два вида энергии: электропневматические, электрогидравлические и пневмогидравлические. Вид энергии управляющего сигнала может отличаться от вида энергии, создающей усилие перемещения.

В электрических системах автоматизации и управления наиболее широко применяются электродвигательные (электромашинные) и электромагнитные исполнительные механизмы. Основным элементом электромашинного исполнительного механизма является электрический двигатель постоянного или переменного тока. Такие исполнительные механизмы обычно называют электроприводами, т.к согласно ГОСТ электропривод - это электромеханическая система, состоящая из электродвигательного, электрического преобразовательного, механического передаточного, управляющего и измерительного устройств, предназначенная для приведения в движение исполнительных органов рабочей машины и управлении этим движением. Электромагнитные ИМ дискретного действия выполняются в основном на базе электромагнитов постоянного и переменного тока и постоянных магнитов. Жесткое и упругое соединение узлов систем осуществляют различного рода электромагнитные муфты.

ИМ должны удовлетворять следующим требованиям:

мощность их должна превосходить мощность, необходимую для приведения в движение объекта управления или его органов во всех режимах работы;

статические характеристики исполнительных механизмов должны быть по возможности линейными и иметь минимальные зоны нечувствительности (зоной нечувствительности называется зона, в пределах которой изменение управляющего сигнала не вызывает перемещение управляемого объекта или его органов);

как наиболее мощные функциональные звенья автоматических систем регулирования должны обладать достаточным быстродействием;

регулирование выходной величины должно быть по возможности простым и экономичным;

должны иметь малую мощность управления.

В качестве исполнительных механизмов в системах автоматики в основном применяются мощные электромагнитные реле, электромагниты, электродвигатели постоянного тока, двухфазные электродвигатели переменного тока, электромагнитные муфты, мембранные и поршневые, гидравлические и пневматические двигатели и др.

2. Электрические исполнительные механизмы

2.1 Общие сведения

Электрическими исполнительными (управляемыми) двигателями автоматических систем называют двигатели, предназначенные для преобразования электрического сигнала в угол поворота или частоту вращения (или перемещения) вала. Такие механизмы, преобразуют энергию электрического тока в механическую энергию с целью воздействия на объект управления или его органы.

Исполнительные механизмы представляют собой электроприводы, предназначенные для перемещения регулирующих органов в системах дистанционного и автоматического управления. В настоящее время наибольшее распространение получили асинхронные двухфазные исполнительные двигатели, исполнительные двигатели постоянного тока с независимым возбуждением или с возбуждением от постоянных магнитов, шаговые двигатели.

Эти двигатели предназначены для различных функциональных преобразований. В зависимости от устройства они могут работать либо в режиме непрерывного вращения (перемещения), либо в шаговом режиме.

Электрические микродвигатели постоянного и переменного тока, применяемые в системах автоматики, вычислительной техники и др., имеют номинальную механическую мощность от сотых долей ватта примерно до 750 Вт.

Требования, предъявляемые к исполнительным двигателя, вытекают из специфических условий работы исполнительных двигателей в устройствах автоматики. Основные из них:

высокое быстродействие (малая инерционность);

возможность регулирования частоты вращения исполнительного двигателя в широком диапазоне;

отсутствие самохода (явление самохода состоит в том, что двигатель продолжает развивать вращающий момент и его ротор продолжает вращаться при сигнале управления);

высокая линейность регулировочных и механических характеристик и обеспечение устойчивости работы во всем рабочем диапазоне угловых скоростей;

малый момент трения (малое напряжение трогания).

малая мощность управления при значительной механической мощности на валу (требование вызвано ограниченной мощностью источников сигнала управления, в основном электронных).

Немаловажным для исполнительных двигателей являются и такие параметры, как пусковой момент, габариты, масса; КПД и cosц имеют второстепенное значение. Когда требуется строго постоянная частота вращения, используются синхронные двигатели.

К основным элементам электрических исполнительных механизмов относятся:

электродвигатель;

редуктор, понижающий число оборотов;

выходное устройство для механического сочленения с регулирующим органом;

дополнительные устройства, обеспечивающие остановку механизма в крайних положениях.

Выходные устройства электрических исполнительных механизмов выполняются так, чтобы осуществить вращательное или прямолинейное движение.

Исполнительные механизмы рассчитаны для работы при температуре окружающей среды от - 30 до +60°С и относительной влажности 30 - 80% (по договоренности с заводом возможно исполнение на диапазон (-50) - (+50) °С). Механизмы имеют пылебрызгозащитное исполнение.

2.2 Классификация

Электрические исполнительные механизмы делятся на электромагнитные и электродвигательные. К электромагнитным исполнительным относятся реле, контакторы, электромагниты, электромагнитные вентили и клапаны, электромагнитные муфты.

Основными видами электрических двигателей, изготавливаемых промышленностью являются: синхронные, асинхронные с короткозамкнутым или фазным ротором и электродвигатели постоянного тока с независимым, сериесным или смешанным возбуждением, а также некоторые виды специальных электродвигателей: коллекторные электродвигатели переменного тока, электродвигатели с постоянными магнитами и др. (рисунок 2.1).

Рисунок 2.1 - Классификация микромашин общего применения

В зависимости от режима и условий работы изготовляются электродвигатели: для длительного и повторно-кратковременного режимов работы; для эксплуатации в нормальной и взрывоопасной среде; открытого, защищенного или закрытого исполнения; для работы в условиях тропического климата и в условиях крайнего севера; горизонтальные, вертикальные, встроенные и др.

Механизмы с вращающимися выходными устройствами подразделяются на однооборотные, у которых угол поворота выходного вала менее или равен 360°, и многооборотные, у которых выходной вал совершает более одного оборота.

Технические характеристики однооборотных исполнительных механизмов приведены в таблице 1и 2.

Таблица 1 - Технические характеристики однооборотных исполнительных механизмов

Тип исполнительного механизма

Тип сервопривода

Номинальный крутящий момент на выходном валу в кгс · м

Время поворота выходного вала на 90є в с.

Масса в кг.

Бесконтактное управление

Контактное управление

МЭОБ-25/100-1

МЭОБ-25/40-1

МЭОБ-63/100-1

МЭОБ-Л-63|100-1

МЭОК-25/100-1

МЭОК-25/40-1

МЭОК-63/100-1

МЭОК-Л-6/100-1

РМ

РМБ

РБ

РБЛ

25

25

63 - 100

63 - 100

100

40

100

100

46

46

123

123

Таблица 2 - Технические характеристики однооборотных исполнительных механизмов

тип

Номинальный момент на выходном валу в кг • м

Время одного оборота выходного вала в с.

Максимальный рабочий угол поворота выходного вала в…є

Напряжение питания в В при частоте 50 ГЦ.

Потребляемая мощность в В • А

Габаритные размеры в мм

Вид управления

Масса в кг

ДР-М

1*

10; 30;

60; 90;

120

180**

220

50

240Ч122Ч285

Контактное

6

ДР-1М

240Ч122Ч180

5

ПР-М

Любой в пределах 180**

230Ч122Ч285

6,5

ПР-1М

230Ч122Ч180

5

ИМ-2/120

2

120

120

30

243Ч228Ч210

8

ИМТМ-4/2,5

4

2,5

350

220/380

270

450Ч200Ч220

16

МЭК-10К/120

10

120

90; 270

127; 220

180

335Ч320Ч435

35

МЭК-10К/360

360

МЭО-25/40К-68

25

40

90; 240

220/380

430

490Ч495Ч465

95

МЭО-63/40-68

63

510

635Ч575Ч535

155

МЭО-63/100-К-68

100

430

635Ч575Ч535

95

МЭО-63/250К-68

250

МЭО-160/100К-68

160

100

510

635Ч575Ч535

155

МЭО-160/40К-68

40

1100

МЭО-400/100К

400

100

750

770Ч640Ч615

270

МЭО-400/250К

250

400

МЭО-1000/250К

1000

750

980Ч670Ч50

530

МЭО-0,25

0,25

100; 250

180***

220

1

116Ч120Ч164

Бесконтактное или контактное

4,3

МЭО-0,63

0,63

180

1

МЭО-1,6/40

1,6

40

90; 240

23

234Ч234Ч213

11

МЭО-4/100

4

100

МЭО-4/40-68

40

65

370Ч300Ч325

26

МЭО-10/40-68

10

117

370Ч360Ч325

30

МЭО-10/100-68

100

64

370Ч300Ч325

26

МЭК-10Б/120

120

110

160

335Ч320Ч435

35

МЭО-10/250-68

250

220

86

370Ч300Ч325

26

МЭК-10Б/360

10

360

90; 140

110

160

335Ч320Ч435

35

МЭО-25/40-68

25

40

220

320

490Ч495Ч465

95

МЭО-25/100

100

117

370Ч360Ч325

30

МЭО-25/250

250

64

370Ч300Ч325

26

МЭО-63/40-68

63

40

585

635Ч575Ч535

180

МЭО-63/100-68

100

320

635Ч575Ч535

95

МЭО-63/250-68

250

120

90

МЭО-160/100-68

160

100

585

635Ч575Ч535

185

МЭО-160/250-68

250

270

170

МЭО-400/250

400

250

450

855Ч640Ч615

285

*Момент, соответствующий повороту вала на 180° за 30 с.

** Поступательное движение штока ДР-М составляет 19 мм, в ПР-М - 20 мм.

*** Полный ход прямоходной приставки 28 мм.

Страницы: 1, 2, 3, 4, 5, 6, 7


ИНТЕРЕСНОЕ



© 2009 Все права защищены.