реферат бесплатно, курсовые работы
 

Гидроочистка дизельного топлива

3. Установки гидроочистки

На отечественных нефтеперерабатывающих предприятиях гидроочистку средних дистиллятов проводят преимущественно на установках Л-24-5, Л-24-6, Л-24-7, ЛЧ-24-2000 и ЛК-6У.

3.1 Установка Л-24-6

3.1.1 Описание установки Л-24-6

Установка Л-24-6 состоит из двух самостоятельных блоков для одновременной переработки двух видов сырья.

Характерной особенностью установки является наличие раздельной системы циркуляции водородсодержащего газа в обоих блоках. Это дает возможность «каскадного» использования его в другом блоке, перерабатывающем сырье, для которого не требуется высокая концентрация водорода в циркуляционном газе.

При гидроочистке в качестве свежего водорода применяется избыточный водородсодержащий газ с установки каталитического риформинга или технический водород со специальных водородных установок.

Смесь сырья с водородсодержащим газом, нагретую в теплообменнике и печи, подвергают гидроочистке в реакторах над АКМ катализатором. Избыточную теплоту реакции отводят путем введения реакторы так называемого холодного циркуляционного газа.

Из реакторов газо-продуктовая смесь после охлаждения поступает сепаратор высокого давления. Выделившийся газ, очищенный абсорбере раствором МЭА, вновь возвращается в цикл.

Для поддержания заданной концентрации водорода на входе блок часть циркуляционного газа отдувается и добавляется соответствующее количество свежего водорода.

Гидрогенизат из сепаратора высокого давления после дросселирования направляется в сепаратор низкого давления и после подогрева в теплообменнике - в стабилизационную колонну.

Дизельное топливо при выходе из колонны разделяется на два потока: один из них, пройдя печь, в виде рециркулята возвращается в колонну, а второй после охлаждения поступает на защелачивание и водную промывку.

Очищенное дизельное топливо выводится с установки. Верхний гродукт колонны стабилизации охлаждается в конденсаторе-холодильнике и разделяется в сепараторе на углеводородный газ, отгон и воду; часть отгона возвращается в колонну на орошение, а другая теть после защелачивания и водной промывки выводится с установки.

На ряде заводов внедрен узел отдува сероводорода из бензина чищенным углеводородным газом. Углеводородный газ подвергается раздельной очистке от сероводорода раствором МЭА: газ из сепааратора низкого давления очищается в абсорбере под давлением ) 0,5 МПа; газ из бензинового сепаратора очищается от сероводорода при 0,13 МПа, затем используется как топливо для печей.

Насыщенный раствор МЭА регенерируется в отгонной колонне, из которой уходит смесь сероводорода и паров воды. После охлаждения в конденсаторе-холодильнике она разделяется в сепараторе. Сероводород выводится с установки для получения серной кислоты или элементарной серы, а вода подается на орошение в отгонную колонну. После отгонной колонны регенерированный раствор охлаждается в теплообменнике, холодильнике и возвращается в цикл. Температурный режим отгонной колонны поддерживается подачей пара в рибойлер.

При потере активности катализатора проводится его газовоздушная или паровоздушная регенерация.

3.1.2 Основное оборудование

Реактор с аксиальным вводом сырья сверху вниз. Корпус реактора изнутри футерован; реактор не имеет защитного стакана. Диаметр реактора 2600 мм.

Продуктово-сырьевые теплообменники кожухотрубчатые, одноходовые по трубному пространству, уплотнения сильфонные на плавающей головке. Диаметр корпуса 800 мм.

Трубчатые печи шатрового типа со сварным змеевиком в зоне огневого нагрева.

Колонные аппараты различного диаметра с желобчатыми тарелками или насадкой из колец Рашига.

Холодильники высокого давления типа «труба в трубе» для готового продукта, установленные на открытой площадке.

Поршневые компрессоры марки 5ВП-16/70.

3.1.3 Экономические показатели

На гидроочистку 1 т сырья расходуется:

Пар, кг..................................................... 42,0

Электроэнергия, МДж ........................... 79,2

Охлаждающая вода, м3 ………………….8,4

Топливо:

мазут, кг................................................. 19,4

газ (при нормальных условиях), м3 …... 4,2

Катализатор, кг .................................... 0,04

Едкий натр, кг....................................... 2,14

Моноэтаноламин, кг ............................ 0,04

Рабочая сила, чел/смена.......................... 10

3.2 Установка Г-24/1

3.2.1 Описание технологической схемы

Принципиальная технологическая схема установки Г-24/1 представлена на рисунке 1.

Исходное сырье - прямогонное дизельное топливо из резервуаров сырьевого парка забирается насосом Н-1 (Н-4) и подается в тройник смешения потока, где смешивается с циркулирующим водородсодержащим газом (ВСГ), поступающего с выкида циркуляционных компрессоров В - 1(В-2). Расход сырья в тройник смешения регулируется клапаном, установленном на линии подачи сырья от насоса Н-1 (Н-4) в тройник смешения. При понижении расхода сырья до 2,5 м3/ч закрывается клапан-отсекатель 173-1, установленный на сырьевой линии до тройников смешения. Для предотвращения попадания сырья обратным ходом в линию водородсодержащего газа при аварийных остановках компрессоров, циркулирующий ВСГ входит в тройник смешения через обратный клапан (Рис. 1).

Газосырьевая смесь из тройника смешения поступает в межтрубное пространство теплообменника Т-1/1, где нагревается до температуры 120ч140 С за счет тепла гидроочищенного топлива, откачиваемого с установки. Из теплообменника Т-1/1 газосырьевая смесь поступает в межтрубное пространство теплообменника Т-2/1, где нагревается до температуры 200-230С за счет тепла продуктов реакции из реактора Р-1, которые проходят через трубное пространство Т-2/1. Температура нагрева регистрируется.

Окончательный нагрев газосырьевой смеси до температуры реакции 280-4000С осуществляется в трубчатой печи П-1 с горелками беспламенного горения.

Рисунок 1 - Технологическая схема установки Г-24/1

Газосырьевая смесь проходит вначале через конвекционную часть печи (18 труб), затем нагревается в радиантной части (20 труб).

Температура газосырьевой смеси на выходе из печи П-1 регулируется, клапаном установленным на линии подачи топливного газа к форсункам печи. ПАЗ печи предусматривает отсечение подачи топливного газа клапаном - отсекателем.

Нагретая газосырьевая смесь из печи П-1 поступает в верхнюю часть реактора Р-1, заполненного катализатором. В реакторе под давлением 2,5-4,5 МПа и температуре 2804000С на поверхности катализатора происходит гидрирование серо-, азото-, кислородосодержащих органических соединений и непредельных углеводородов. Так как эти реакции протекают с выделением тепла, то температура в реакторах может повышаться. Температура и давление по высоте слоя катализатора, на входе и выходе из реактора регистрируется. По изменению перепада давления в реакторе определяют степень закоксованности катализатора. Допускается перепад давления в реакторе не более 6 кгс/смІ. Увеличение перепада давления по слою катализатора с одновременным увеличением содержания серы в гидроочищенном топливе указывает на снижение активности катализатора.

Горячая смесь продуктов реакции и водородсодержащего газа (гидрогенизат) выходит снизу реактора Р-1, проходит через трубное пространство теплообменника Т-2/1, где отдает часть тепла газосырьевой смеси и с температурой не более 300 0С поступает в высокотемпературный сепаратор высокого давления Е-1/1.

Температура ввода гидрогенизата из теплообменника Т-2/1 в сепаратор Е-1/1 регулируется клапаном, который установлен на линии подачи гидрогенизата из реактора Р-1 в сепаратор минуя теплообменник Т-2/1 (на байпасных линиях теплообменников).

В сепараторе Е-1/1 происходит отделение водородсодержащего газа от жидкой фазы (гидрогенизата).

Выделившийся газ из высокотемпературного сепаратора высокого давления Е-1/1 выходит сверху и после охлаждения оборотной водой в межтрубном пространстве холодильника Т-3/1 до температуры не более 50 0С поступает в сепаратор высокого давления Е-2/1, где происходит отделение водородсодержащего газа от жидкой углеводородной фазы, образовавшейся после охлаждения в холодильнике Т-3/1.

Водородсодержащий газ сверху из сепаратора Е-2/1 поступает в низ абсорбера К-3 для очистки раствором моноэтаноламина от сероводорода. После очистки в абсорбере К-3 ВСГ через сепаратор Е-3 поступает на всас компрессора В-1(В-2) и далее в тройник смешения.

Гидрогенизат с низа сепаратора Е-1/1 самотеком поступает в отпарную колонну К-1/1.

Уровень жидкости в сепараторе Е-1/1 регулируется клапаном, который установлен на линии гидрогенизата из Е-1/1 в К-1/1.

Накопившийся в низу сепаратора Е-2/1 конденсат выводится в сепаратор С-3 или на 13 тарелку колонны К-1/1. Уровень жидкости в сепараторе Е-2/1 поддерживается клапаном, который установлен на линии гидрогенизата из Е-2/1.

В отпарной колонне К-1/1 происходит отгон легких углеводородов, растворенных углеводородных газов и сероводорода за счет подачи перегретого водяного пара и снижения давления. В колонне К-1/1 имеются 13 тарелок S-образного типа. Подача сырья предусмотрена на 13, 10 и 7 тарелки.

В низ колонны К - 1/1 подается перегретый водяной пар. Схема получения перегретого водяного пара имеет следующий вид: от паровой гребенки печи П-1 острый водяной пар с давлением до 12 кгс/смІ поступает в змеевики пароперегревателей в печи П-1, где нагревается до температуры 240 0С. Далее перегретый пар через маточник подаётся под нижнюю тарелку колонны К-1/1. Расход перегретого пара в колонны регулируется клапаном, установленном на линии подачи пара в К-1/1.

Отогнанные в отпарной колонне К-1/1 легкие фракции, уходящие вместе с водяным паром сверху колонны с температурой до 180 0С поступают в межтрубное пространство холодильников Т-5/1, Т-5/2, где происходит конденсация и охлаждение. Далее сконденсированный продукт и углеводородный газ с температурой до 50 0С поступают в сепаратор С-3.

С низа отпарной колонны К-1/1 гидроочищенное топливо, содержащее следы воды самотеком поступает в колонну вакуумной сушки К-2/1. Так же возможен вывод продукта помимо колонны К-2/1 напрямую в товарный парк. Уровень в К-1/1 регулируется клапаном, который установлен на перетоке гидрогенизата из К-1/1 в К-2/1.

В колонне К-2/1 происходит испарение воды под вакуумом. Вакуум создается с помощью двухступенчатого эжектора Э-1. На эжектор подается острый пар.

Оборотная вода подается в холодильник эжектора для охлаждения и конденсации паров из К-2/1 и стекает по барометрической трубе, опущенной под слой воды, в ящик барометрической трубы Е-31/1 для обеспечения гидрозатвора.

Готовое гидроочищенное топливо с низа колонны вакуумной осушки К-2/1 поступает на прием насоса Н-5 (Н-8) и прокачивается насосом через трубное пространство теплообменника Т-1/1, где охлаждается, нагревая газосырьевую смесь, проходящую через межтрубное пространство Т-1/1.

После теплообменника Т-1/1 гидроочищенное топливо охлаждается в межтрубном пространстве холодильника Т-8/1 до температуры не более 60 0С.

Далее гидроочищенное дизельное топливо выводится в резервуары товарного парка.

3.2.2 Режим работы реактора

В реакторе на поверхности катализатора происходит гидрирование серо-, азото-, кислородосодержащих органических соединений и непредельных углеводородов. Так как эти реакции протекают с выделением тепла, то температура в реакторах может повышаться. Температура и давление по высоте слоя катализатора, на входе и выходе из реактора регистрируется. По изменению перепада давления в реакторе определяют степень закоксованности катализатора. Допускается перепад давления в реакторе не более 6 кгс/смІ. Увеличение перепада давления по слою катализатора с одновременным увеличением содержания серы в гидроочищенном топливе указывает на снижение активности катализатора.

Оптимальный режим работы реактора:

Температура сырья на входе в реактор 320-360 °С

Давление на входе в реактор 4,0-4,5 МПа

Кратность циркуляции ВСГ 200-300 нм3/м3

Объемная скорость подачи сырья 2,0-4,0 ч-1

3.2.3 Характеристика производственной среды. Анализ опасностей и производственных вредностей

Установка Г-24/1 предназначена для гидроочистки масел или дизельного топлива путем деструктивной гидрогенизацией сернистых соединений на алюмокобальтмолибденовом катализаторе в среде водорода. По технологическим условиям (давление до 5.0МПа и температуре до 400°С), жидкая фаза в технологическом оборудовании, в основном, находится в перегретом состоянии, т.к. обращается в объеме аппаратов и трубопроводов при высоких температурах и давлениях, кроме того, в оборудовании присутствуют различные углеводородные газы.

Полная разгерметизация технологического оборудования с перегретой жидкостью сопровождается переходом большой части этой жидкости в парообразное состояние и образованием взрывопожароопасных облаков. Взрывы подобных облаков обладают большой разрушительной силой и сопровождаются серьезными последствиями.

Наиболее тяжелые последствия могут быть в результате аварии при мгновенной разгерметизации оборудования и выброса смеси водородсодержащих паров жидких углеводородов из технологических блоков. Образовавшееся углеводородное парогазовое облако, которое может содержать все количество вещества, находящегося в блоке, способно загореться или взорваться при наличии источника зажигания, в качестве которого, может выступать нагревательная печь.

При разливе жидких углеводородов происходит испарение углеводородов с поверхности разлития. Объем образующегося парогазового облака углеводородов значительно меньше, чем при разгерметизации оборудования с перегретой жидкостью и при наличии инициатора загорания выгорает по поверхности разлития, что может привести к перегреву емкостного оборудования, трубопроводов и металлоконструкций, находящихся в близи очага пожара.

Основными факторами опасности на установке являются:

- горючесть, взрывоопасность и токсичность продуктов, применяемых и получаемых на установке, наличие их в аппарате в большом количестве;

- возможность образования зарядов статического электричества при движении газов и жидкостей по трубопроводам и в аппаратах;

- наличие электротехнических устройств высокого напряжения;

- применение в технологическом процессе нагревательных печей, где продукт нагревается до высоких температур и находится под давлением;

- наличие насосов и компрессоров, нагнетающих токсичные и взрывоопасные продукты;

- наличие нагретых до высоких температур поверхностей

Характеристика вредных и взрывопожароопасных веществ, применяемых, обращаемых и получаемых на установке Г-24/1.

3.2.4 Мероприятия по обеспечению безопасности производства

Для обеспечения безопасности производства каждый сотрудник проходит инструктаж.

Для обеспечения безаварийной работы установки и достижения минимального уровня взрывопожароопасности процесса предусмотрены следующие мероприятия:

- процесс осуществляется по непрерывной схеме и в герметичных аппаратах;

- все стадии технологического процесса непрерывны и склонны к устойчивому протеканию;

- вся технологическая схема установки разделена на 6 технологических блоков (№ 1, 2/1, 2/2, 2/3, 3, 4), которые, в случае возникновения аварии или инцидента, могут быть отключены друг от друга отсекателями, запорной арматурой, системой защиты и блокировок;

- при соблюдении правил эксплуатации процесс не обладает возможностью взрыва внутри технологической аппаратуры;

- для перемещения легковоспламеняющихся жидкостей применены герметичные центробежные насосы с двойным торцевым уплотнением типа «ТРЕМ»;

- применяемые, обращающиеся и получаемые вещества не обладают способностью быстро и спонтанно полимеризоваться, реагировать с водой, саморазогреваться и самовоспламеняться, не склонны к непроизвольному термическому разложению при высоких температурах и давлениях;

- не применяются продукты и теплоносители, несовместимые между собой;

- на установке отсутствуют открытые поверхности аппаратов и трубопроводов с температурой выше температуры самовоспламенения обращаемых веществ;

- контроль и управление процессом осуществляется автоматически и дистанционно из операторной с использованием электронной системы приборов;

- по параметрам, определяющим взрывопожароопасность процесса, предусмотрена противоаварийная автоматическая система защиты, предупредительная сигнализация и аварийная система блокировок;

- на аппаратах, где возможно повышение давления до максимально допустимого, установлены предохранительные клапаны;

- предусмотрены система аварийного освобождения аппаратов от нефтепродукта в аварийную емкость и аварийный сброс на факел;

- на наружной установке, где расположено оборудование, в котором обращаются взрывопожароопасные вещества, предусмотрены датчики загазованности, сигналы от которых поступают в операторную.

Согласно ГОСТ 12.1.044-91 на установке предусмотрены следующие средства пожаротушения:

- первичные средства пожаротушения (огнетушители - пенные ОХП-10, корюшковые ОПУ-10,ОПС-10г, углекислотные ОУ-5,ОУ-8; кошмы, ящики с песком, лопаты и т.д.);

- стационарная система пенотушения открытой насосной;

- водяная оросительная система колонных аппаратов;

- лафетные стволы на лафетных вышках (4 вышки);

- пожарные краны в помещении компрессорной.

- для печей предусмотрена система паротушения, а вокруг печей предусмотрена паровая завеса, включающаяся автоматически по сигналу загазованности на наружной установке.

Для предотвращения несчастных случаев, заболеваний и отравлений, связанных с производством, весь обслуживающий персонал установки обеспечивается следующими средствами защиты:

- специальной одеждой - хлопчатобумажные костюмы, рукавицы комбинированные, защитные очки, ботинки кожаные, диэлектрические калоши и перчатки для машинистов;

- резиновый фартук, резиновые перчатки для работы с раствором МЭА;

- фильтрующими противогазами марки «БКФ», защищающими органы дыхания от кислых и органических паров и газов (ГОСТ 12.4.041-2001);

- шланговыми противогазами ПШ-1, ПШ-2 отвечающие требованиям ГОСТ 12.4.041-2001, комплектом масок и спасательным поясом с веревкой для работы при высоких концентрациях газа в воздухе (более 0,5 % об. или при концентрации кислорода менее 18 % об.) или при работе внутри емкостей, колонн, колодцев и при ямках;

- аварийным запасом фильтрующих противогазов;

- медицинской аптечкой с необходимым набором медикаментов для оказания пострадавшему первой медицинской помощи.

В качестве защитной одежды на установке согласно ГОСТ 12.4.016-75 и ГОСТ 12.4.017-76 предусматривается комплект специальной одежды: х/б костюм, кожаные ботинки, рукавицы, куртка и брюки ватные.

Для предотвращения возникновения зарядов статического электричества, защиты от вторичных проявлений молнии предусмотрены следующие мероприятия:

- каждая система аппаратов, трубопроводов, представляет собой на всем протяжении непрерывную электрическую цепь, которая в пределах установки заземляется не менее, чем в двух местах;

- для защиты зданий и сооружений от прямых ударов молний, соглас-но РД 34.21.122-87, а также ПУЭ аппараты с толщиной стенок более 4 мм присоединены к защитному заземлению не более 4 Ом;

- для защиты людей от поражения электрическим током на установке, в соответствии с ПУЭ, предусмотрено защитное заземление и зануление электрооборудования;

- при вводе жидкости в аппараты по возможности исключено разбрызгивание (ввод под слой жидкости);

- скорость движения продуктов в аппаратах и трубопроводах не превышает значений, предусмотренных проектом.

- при нормальной эксплуатации установки все оборудование и коммуникации находятся при избыточном давлении нефтепродуктов и их паров, что исключает возможность образования в аппаратах и трубопроводах взрывоопасных смесей. При остановке установки аппараты и трубопроводы заполняются техническим азотом.

Список использованных источников

1. Ахметов С.А. Технология глубокой переработки нефти и газа. - Уфа: Гилем, 2002. - 669 с.

2. Черножуков Н.И. Очистка и разделение нефтяного сырья, производство товарных нефтепродуктов. - М.: Химия, 1978. - 423с.

3. Магарил Р.З. Теоретические основы химических процессов переработки нефти. - М.: Химия, 1976. - 311 с.

4. Аспель Н.Б., Демкина Г.Г. Гидроочистка моторных топлив. - М.: Химия, 1977.- 158 с.

5. Танатаров М.А., Ахметшина М.Н. и др. Технологические расчеты установок переработки нефти.- М.: Химия, 1987г. - 351 с.

6. Багиров И.Т. Современные установки первичной переработки нефти.- М.: Химия, 1974. - 237 с.

7. Ластовкин Г.А. Справочник нефтепереработчика. - М., 1986. - 649 с.

8. Эрих В.Н. Химия и технология нефти и газа. - М.: Химия, 1977. - 424 с.

9. Каминский Э.Ф. Глубокая переработка нефти. - Уфа, 2001. - 385 с.

Страницы: 1, 2


ИНТЕРЕСНОЕ



© 2009 Все права защищены.