реферат бесплатно, курсовые работы
 

Газификация микрорайона Восточный

3.1 Расчет тупиковых разветвленных газовых сетей среднего и высокого давления

Расчет по традиционной методике сводится к определению необходимых диаметров и проверке заданных перепадов давлений. Расчет можно производить по формулам или номограммам, которые значительно упрощают все вычисления.

Номограммы построены в координатах

QP=f(Acp, D), (3)

(4)

где L - длина участка газопровода;

Рн, Рк - абсолютное начальное и конечное давление соответственно в начале и конце участка газопровода;

D - диаметр участка газопровода.

Порядок расчета

1. Начальное давление в газовой сети высокого или среднего давления определяется режимом работы газорегуляторной станции (ГРС), конечное - рабочим давлением на входе в газорегуляторные пункты (ГПР) (сетевые или объектовые).

2. Выбирается наиболее удаленная точка распределительных газопроводов и определяется общая длина по выбранному основному направлению.

3. При расчетах газораспределительных сетей по традиционному методу применяется правило постоянного перепада квадратов давления на единицу длины газопровода

Расчетная длина выбранного направления с учетом потерь на местные сопротивления

(5)

где li - геометрическая длина участка газопровода.

4. Определяются расчетные расходы газа для каждого сосредоточенного отбора газа и для участков газопровода.

5. По величинам Аср и Qp по номограммам определяются диаметры отдельных участков газопровода. Диаметры округляются по ГОСТ обычно в большую сторону.

Для стандартных диаметров при известных расходах газа находятся действительные значения Аср , затем разность квадратов давлений.

6. Производится расчет давлений. Так как давление на выходе из ГРС известно, то расчет можно вести с начала газораспределительной сети. При давлениях Рк значительно больших заданных уменьшают диаметры участков, расположенных ближе к началу основного направления.

7. После расчета давлений в узлах основного направления приступают к расчету ответвлений, начиная со второго пункта рассмотренной методики. При этом за начальное давлении на ответвлении принимается давление в узле, из которого оно исходит.

3.2 Расчет тупиковых разветвленных газовых сетей низкого, высокого и среднего давлений методом оптимальных диаметров

В специальной литературе нет обоснованных рекомендаций для осуществления корректировки диаметров участков как для случая превышения расчетного перепада давления, так и для случая его неполного использования. Метод расчета оптимальных диаметров основан на оптимальном распределении перепада давления. В качестве расчетных формул для гидравлического расчета газопроводов были приняты практические зависимости, до настоящего времени используемые французской фирмой GAS de FRANCE. В качестве целевой функции, минимум которой обеспечивает оптимальное распределение расчетного перепада давления, избрана материальная характеристика

Порядок расчета

1. Определяются расчетные расходы газа по участкам.

2. Определяются материальные характеристики М, для всех участков.

3. Определяются параметры участков Пi , при этом:

- определение параметров производится от тупиковых участков против хода газа;

- для бестранзитных участков Пi =0;

- для участков примыкающих к бестранзитным, параметр определяется по формуле

(6)

- после определения параметров Пi определяют показатель А для каждого участка; эту операцию следует производить от точки питания к периферии;

- зная расчетные расходы газа, длину участков и значения А, подбирают диаметр этих участков по основной расчетной формуле.

При постановке и решении любой оптимизационной задачи требуется четко выделить критерий (критерии оптимальности), назначив при этом целевую функцию.

В рассматриваемом случае в качестве критерия оптимальности выбраны минимальные затраты на строительство тупиковой газораспределительной сети (стоимость труб и работ по строительству).

Метод оптимальных диаметров может быть использован для тупиковой газораспределительной сети любой конфигурации. При этом оптимизация ведется одновременно по всем направлениям и тупиковым отводам.

Линия гидравлического уклона при использовании этого метода будет отличаться от таковой, рассчитанной по старому методу. Рассмотрим соотношение:

(7)

Представим его в следующем виде

(8)

При расчете по старому (традиционному) методу

(9)

Представим соотношения (7) и (8) на одном графике

Рисунок 1 - Сравнение распределения расчетного перепада давления между участками сети при различных методах расчета

Сравнение показывает, что при использовании метода оптимальных диаметров линия гидравлических уклонов представляет собой ломаную линию, всегда располагающуюся ниже линии гидравлических уклонов при традиционном решении.

Отсюда можно сделать следующие практические выводы, которые необходимо учитывать при традиционном методе решения:

1. Если, после выбора стандартных диаметров, конечное давление в конце расчетного направления оказалось существенно больше минимально допустимого, то можно уменьшить диаметры на начальных участках рассматриваемого направления.

2. Если же, после выбора стандартных диаметров, конечное давление в конце расчетного направления оказалось меньше минимально допустимого, то следует увеличивать диаметры на участках, расположенных ближе к концу рассматриваемого направления.

Согласно СНиП 42-01-2002 рабочее давление в сети низкого давления не должно превышать 5кПа, а в жилых домах её значение не должно быть выше 3 кПа, отсюда принимаем рабочий перепад давлений АРР=1200 Па.

Расчет диаметров производим по программе Seti_ok3.bas. Результаты вычислений приведены ниже.

Результаты гидравлического расчета разветвленной газовой сети

Участок

L, м

0,мЗ/ч

D*b, мм*мм

Перепад Па

1

2

3

4

5

б

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

53

24

91

19

105

19

273

306

321

263

306

321

153

206

273

234

167

211

19

120

19

19

129

134

100

211

19

201

96

86

201

471,5

421,9

273,0

242,5

222,2

111,1

93,8

57,4

19,1

92,0

55,6

19,1

10,1

15,3

36,6

11,7

144,2

52,2

41,8

6,0

29,8

14,9

7,4

7,4

77,2

11,7

57,7

10,3

30,0

25,1

11,7

219*6

159*4,5

159*4,5

159*4,5

159*4,5

108*4

108*4

89*3,5

89*3,5

108*4

89*3,5

76*3,5

57*3

57*3

76*3,5

57*3

108*4

76*3,5

76*3,5

57*3

76*3,5

57*3

57*3

57*3

89*3,5

57*3

76*3,5

57*3

76*3,5

76*3,5

76*3,5

31,1

56,3

96,1

16,3

76,4

28,6

299,4

362,9

53,2

278,8

342,3

121,9

80,6

224,6

331,4

159,8

403,3

487,2

29,7

25,0

16,1

20,0

39,3

40,7

204,1

143,5

53,3

108,7

81,2

53,3

32,0

Конечное давление по направлению 1 = 1979.8 Па

Конечное давление по направлению 2 = 1980.9 Па

Конечное давление по направлению 3 = 2719.6 Па

Конечное давление по направлению 4 = 2591.9 Па

Конечное давление по направлению 5 = 2477.7 Па

Конечное давление по направлению 6 = 1967.4 Па

Конечное давление по направлению 7 = 1917.0 Па

Конечное давление по направлению 8 = 1935.6 Па

Конечное давление по направлению 9 = 2161.7 Па

Конечное давление по направлению 10 = 2143.2 Па

Конечное давление по направлению 11 = 2085.3 Па

Начальное давление в сети Р1= 3000.0 Па

Требуемое конечное давление Р2= 1800.0 Па

Расчетный перепад давления Н0= 1200.0 Па

Массив направлений по приоритету :

1

9

8

7

6

5

4

3

2

1

2

12

11

10

5

4

3

2

1

3

13

4

3

2

1

4

14

3

2

1

5

16

15

1

6

20

19

18

17

2

1

7

23

22

21

19

18

17

2

1

8

24

21

19

18

17

2

1

9

26

25

17

2

1

10

28

27

25

17

2

1

11

31

30

29

27

25

17

2

1

4. Выбор типа ГРП и его оборудования

По Q=471,5238 ivr/ч выбираем шкафной газорегуляторный пункт типа ГРПШ-400-01, изготовитель ООО «Радон и К°», город Энгельс Саратовской области. В состав пункта входят:

-- узел фильтра;

-- линия редуцирования давления газа;

-- обводная линия, байпас.

Рисунок 2 - Шкафной газорегуляторный пункт

Таблица 3 - Технические характеристики ГРПШ-400-01

Регулятор давления газа

Давление газа на входе, Рвх, МПа

Диапазон настройки выходного давления, Рвых, кПа

Максимальная пропускная способность, м3/ч

Масса, кг

1

2

3

4

5

РДНК-400М

0,6

Рвых =2-5

500

90

Рисунок 3 - Габаритный чертеж газорегуляторного пункта шкафного (ГРПТТТ)

1-- Рвх; 2 -- дымоход; 3 -- выход клапана предохранительного сбросного; 4 -- вентиляционный патрубок; 5 -- продувочный патрубок; 6 -- вход клапана предохранительного сбросного; 7 -- Рвых; 8 -- подвод импульса к регулятору.

Подбор оборудования ГРП производительностью 471,5238 м3/ч при избыточном давлении на входе 95 кПа и на выходе ЗкПа. Плотность газа 0,725 кг/м3, температура газа Т=276 К.

Предварительно задаемся потерями в газопроводах ГРП, кранах 1,5, предохранительном запорном клапане 3 и фильтре 2 (рисунок 3) в размере 3 кПа. В этом случае перепад давления на клапане регулятора 4 давления будет равен ДР=95-3-3=89кПа

Рисунок 4 - Расчетная схема ГРП

Абсолютное давление газа на входе и выходе регулятора давления (РД)

Р1 =Ри+Ра =95+1 00=1 95 кПа,

Р2=3+100=103кПа

Режим течения газа через клапан РД

что говорит о докритическом течении газа через РД.

По полученному значению ?Р/Р1 =0,456 из графика [2] находим значение поправки на изменение плотности газа е =0,772 при коэффициенте адиабаты для природного газа k=l,3-

Определим коэффициент пропускной способности РД

где е - коэффициент, учитывающий плотности газа при движении через дроссельный орган, е=0,772;

?Р - перепад давления на регуляторе, ?Р=0,089 МПа;

Р1 - давление газа перед регулятором, Р1 =0,195 МПа;

Т1 - температура перед регулятором, Т1 = 276 К;

со - плотность газа при нормальных условиях, кг/м3;

z1 - коэффициент сжимаемости при условии входа в регулятор давления,

z1 =l;

Q - пропускная способность ГРП, Q=471,5238 м3/ч;

Подбираем регулятор давления с коэффициентом пропускной способности близким к расчетному kv=12,5. Для kv=22 соответствует РДНК-400М. Рассчитан на устойчивую работу при воздействии температуры окружающего воздуха от -40 °С до +60 °С и относительной влажности до 95 % при температуре +35 °С, изготовитель ЗАО «Сигнал-Прибор», г. Энгельс Саратовской области.

Рисунок 5 - Регулятор давления РДНК-400М

Определим запас его пропускной способности

т.е. пропускная способность несколько больше необходимой, что удовлетворят требованиям.

Для очистки газа примем волосяной фильтр с D=50 мм. Его пропускная способность при абсолютном давлении на выходе =0,7 МПа, перепад давления и плотность газа ст=0,725 кг/м3 составит QT=6000 м3/ч.

Потери давления на фильтре при заданной пропускной способности ГРП

где Р2=195 кПа - давление на выходе из фильтра или давление на выходе РД.

Скорость движения газа в линиях редуцирования

а) до регулятора давления б) после регулятора давления

б) после регулятора давления

где D - внутренний диаметр трубопровода, D =0,05м.

Полученные скорости высоки, т.к. при движении газа по трубам они вызывают большой шум, что недопустимо при эксплуатации. Для снижения скорости и уменьшения шума примем диаметры трубопроводов до и после регулятора давления равными 125 мм, тогда скорости составят wl =11 м/с и w2 = 21,5 м/с.

Определяем потери давления в кранах, местных сопротивлениях и в клапане ПЗК линии редуцирования.

Принимаем следующие значения коэффициентов местного сопротивления:

Таблица 4 -- Местные сопротивления

Сопротивления

До регулятора

После регулятора

1

2

3

Кран(=2)

2

2

ПЗК(=5)

5

-

Переход на D=125

мм

0,55

0,55

Итого

7,55

2,55

Гидравлические потери составляют

а) до регулятора давления

б) после регулятора давления

Суммарные потери давления в линии редуцирования составят

Эта величина меньше предварительно принятой 3 кПа, что приводит к увеличению запаса пропускной способности регулятора давления на 60 %.

Страницы: 1, 2, 3


ИНТЕРЕСНОЕ



© 2009 Все права защищены.