реферат бесплатно, курсовые работы
 

Безотходная переработка сульфатного и сульфитного щелоков

Безотходная переработка сульфатного и сульфитного щелоков

ВВЕДЕНИЕ

В обычном бумагоделательном крафт-процессе волокнистое целлюлозное сырье, обычно древесные стружки, подвергается варке в варочном растворе, так называемом белом растворе, содержащем сульфид и гидроксид натрия. В результате получают бумажную массу и отработанный варочный раствор, так называемый черный раствор. Отработанный раствор отделяют от бумажной массы путем промывки в промывном аппарате для небеленой массы и бумажную массу направляют на стадию отбеливания. Эти процессы сопровождаются образованием большого количества отходов, курсовая работа посвящена способам извлечения натрия из варочного раствора.

Глава 1. ПРОИЗВОДСТВО СУЛЬФАТНОЙ ЦЕЛЛЮЛОЗЫ

В настоящее время применяются два основных метода щелочной варки: натронный и сульфатный, а также их модификации, включая варки в присутствии антрахинона. Наибольшее распространение получил сульфатный метод, как наиболее эффективный и экономичный способ получения технической целлюлозы, обладающей высокими механическими характеристиками, позволяющий перерабатывать древесину практически всех пород, включая и высокосмолистые виды. Более 60 % из производимых волокнистых полуфабрикатов получают сульфатным методом.

При сульфатной варке в качестве химических реагентов используют гидроксид натрия и сульфид натрия. Древесина в виде щепы загружается в специальный аппарат (варочный котел), куда добавляется раствор реагентов, называемый белым щелоком. Соотношение раствор--древесина (жидкостной модуль) колеблется в диапазоне 3-7. Расход гидроксида натрия лежит в пределах 15-25 % в единицах Na2O (ед. Na2O = = ед. NaOH Ч 0,775).

Общая схема производства целлюлозы по сульфатному способу складывается из следующих операций (рис. 15.2.12).

1. Подготовка древесины.

2. Варка щепы в водном растворе (белом щелоке), содержащем в качестве активного реагента гидроксид натрия (натронный способ) или смесь гидроксида и сульфида натрия (сульфатный способ) в периодически или непрерывно действующих котлах.

3. Отделение отработанного варочного раствора (черного щелока) от целлюлозы, промывка целлюлозы.

4. Очистка, обезвоживание и сушка целлюлозы.

5. Отбелка и облагораживание целлюлозы.

Кроме того, в состав сульфатцеллюлозного производства входит отдел регенерации химикатов и тепла из черного щелока (ЧЩ), а также система улавливания газообразных продуктов. Процесс регенерации включает следующие операции: 1) выпарка черного щелока до концентрации 55-80 % СВ; 2) сжигание сгущенного щелока с получением минерального остатка в виде плава и утилизацией тепла в паровых котлах); 3) каустизация раствора плава (зеленого щелока) известью с целью перевода карбоната натрия в гидроксид натрия с получением белого щелока (БЩ); 4) регенерация извести, т. е. получение оксида кальция из образующегося в предыдущей стадии карбоната кальция, путем разложения последнего при высокой температуре.

Рис. 1. Общая схема производства сульфатной целлюлозы

В процессе регенерации щелоков производится возмещение потерь щелочи и серы, неизбежных в производственном кругообороте, добавлением каустической или кальцинированной соды при каустизации в натронном производстве или добавкой сульфата натрия при сжигании щелоков в случае сульфатного производства.

Волокнистая масса может быть получена из древесного сырья, недревесного сырья и вторичных, возвращенных в цикл волокон (макулатуры). Снабжение волокном также различается в зависимости от его доступности, производства и потребления.

Еще ранние цивилизации использовали как источник материалов для письма различные волокнистые материалы из растения, такие как папирус, древесина, кора, бамбук. Производство бумаги, а именно формование бумаги из разделенных волокон, началось в Китае в 105 г н.э. Кто открытие приписывают Цая-Луну, слуге императорского двора, использовавшему как источник волокна лен, кору тутового дерева и тряпье. В это же время в Европе использовали пергамент, но в Средневековье он, был вытеснен бумагой, первоначально вырабатываемой из тряпья и пеньки. Промышленное применение древесины как источника волокна для производства бумаги началось в середине 1600-х годов. Вследствие своей доступности, экономических факторов и технологических преимуществ древесина стала, однако, основным источником волокна для производства бумаги в Северной Америке и из нее в настоящее время в Соединенных Штатах вырабатывается 99% волокна.

Древесное волокно

По существу любая древесина может быть превращена в волокнистую массу каким-либо способом, однако обычно для этой цели используют определенные древесные породы вследствие качества их волокна, легкости получения волокнистого полуфабриката к доступности, а также потому, что они менее подходят для выработки других продуктов. Наиболее часто используемый целлюлозно-бумажной промышленностью Северной Америки древесные породы перечислены в табл.1. Преимущества древесины по сравнению с другими возобновляемыми растительными источниками волокна состоят в круглогодичной доступности в отличие от сезонности уборки урожая, относительной стабильности при хранении в виде бревен или щепы, возмоености использования отходов деревообработки (щепа и отходы лесопиления), относительно низком содержании силикатов и других минеральных веществ, низкой стоимости выращивания и возможности подбирать разновидности волокон для определенных изделий, вследствие морфологических различия между древесными породами.

Анатомия хвойной древесины в виде схемы трех разрезов древесины сосны представлена на рис1. Главный тип клеток - это аксиально расположенные трахеиды (TR). Несмотря на то, что в ботанической терминологии трахеиды не рассматриваются как истинные волокна, они являются бумагообразующими волокнами хвойных пород и в обычной производственной практике, так же как и во всей этой главе, трахеиды относят к волокнам. Другие типы клеток хвойной древесины - это клетки веретенообразных в поперечном сечении древесных (сердцевинных) лучей (WR), а также клетки продольной и эпителиальной паренхимы, окружающие горизонтальные и вертикальные смоляные ходы (HRD) и (vRD), соответственно. По мере роста дерева клетки образуются в концентрической ламелле камбиального слоя, расположенного между корой и древесиной. Весной, когда много влаги и дерево быстро растет, клеточная стенка трахеиды тонкая (3-5 мкм), а полость клетки, или люмен, относительно большая (26-43 мкм). Эта часть древесной ткани называется ранней древесиной. (ЕW). В течение лета и позже в период сезона роста толщина клеточных стенок возрастает до 9-12 мкм., а внешний диаметр уменьшается приблизительно с 47 до 29 мкм для таких пород, как южные сосны.

Эти клетки образуют позднюю древесину (LW). Последовательное чередование сезонных типов клеток приводит к характерным годичным кольцам деревьев (AR), которые более или менее отчетливы в хвойной древесине в зависимости от породы.

Недревесное волокно

Недревесные волокна различаются по своему качеству. Прочность лубяных волокон некоторых растений, таких как конопля, джут и лен, превосходит прочность волокон древесины хвойных. В общем, однако, волокна трав, зерновых злаков и других "соломенных" целлюлоз по своим характеристикам близки к волокнам древесины лиственных пород. В некоторых частях света недревесные волокна являются основным источником волокна, особенно в большей части Азии, где запасы древесины ограничены.

В настоящее время в Соединенных Штатах недревесные волокна применяются, в основном, для специальных сортов бумаги. Хлопковые волокна в виде тряпья или хлопкового линтера используются в высококачественных сортах бумаги и различных специальных сортах, таких как папиросная бумага, бумага для карт, диаграмм и светокопий.

Вторичное волокно и отходы древесины

Термин "вторичное волокно" относится к повторно используемой бумаге. Вторичные волокна подразделяются на категории в соответствии с общей промышленной классификационной схемой , сохраняемой много лет Институтом промышленной переработки отходов. Эти категории (из которых несколько десятков применяются в промышленности) объединены в пять основных групп, официально признаваемых промышленными и торговыми ассоциациями и Департаментом торговли Соединенных Штатов. В статистике они называются; старая газетная бумага (СГБ) , старая гофрированная тара (СГТ) , смешанная макулатура, заменители волокнистых полуфабрикатов и высококачественная облагороженная макулатура. СГБ обычно перерабатывается в газетную бумагу и, поэтому, требует отбелки. Она может быть использована для получения картона и небумажных продуктов, не требующих отбелки СГТ также перерабатывается в первоначальные продукты и не требует отбелки. Однако, некоторые предприятия повышают качество СГТ для получения беленой печатной и писчей бумаги (2,3). Название " смешанная макулатура " предполагает, что она содержит различные типы волокон, некоторые из которых способны к отбелке. Заменители волокнистых полуфабрикатов представляют собой чистые бумажные отходы: бумажные обрезки, перфокарты и другие перерабатываемые отходы. Указанные заменители могут включать окрашенную бумагу, однако белая бумага используется без дальнейшей отбелки. Высококачественная облагороженная макулатура включает мелованные и высококачественные сорта бумаги, способные к отбелке.

Скорость оборота и объем применения вторичного волокна значительно возросло в Соединенных Штатах в 90-е годы. Рекордное количество - 26 миллионов тонн вторичного волокна было использовано промышленностью Соединенных Штатов в 1993 г. Поступление вторичного волокна составило около 30% от массы конечной продукции.

В дополнение к используемой повторно бумаге значительная часть общего поступления волокна приходится на древесные отходы, получаемые, главным образом, от лесопиления и производства фанеры. Древесная щепа, стружки, опилки и другие отходы составляют около 40% от приблизительно 360 млн. кубометров древесины, потребляемой ежегодно целлюлозно-бумажными предприятиями США в начале 90-х годов; остальные 60% потребляемой древесины получены почти полностью за счет собственных лесозаготовок.

Сульфатный процесс

Основной способ получения целлюлозы в Северной Америке это сульфатный процесс. Щелочной варочный раствор содержит гидроксид натрия и сульфид натрия. Если содержание обоих химикатов выражено в виде эквивалентов оксида натрия (Na2О), то для обозначения процентного содержания сульфида натрия в смеси используется термин сульфидность. Обычно применяемая сульфидность варьируется от 25% до 35% и выше. Показано, что более высокая доля сульфида благоприятствует проведению варки до более низкого содержания лигнина. Название сульфатного процесса - "крафт" - процесса - происходит от немецкого термина "крафт", обозначающего "прочный" и характеризует целлюлозу, подученную введением сульфида натрия в щелок как более прочную, по сравнению с целлюлозой, полученной использованием одного гидроксида натрия, как это имеет место в первоначальном натронном способе. Альтернативный термин - сульфатный процесс, происходит от применения сульфата натрия в качестве восполняющего химиката в системе регенераций. В регенерационной печи сульфат натрия восстанавливается до сульфида натрия.

Древесная щепа пропитывается варочным раствором до отношения жидкость-древесина (гидромодуля) около четырех. Варка в "паровой фазе" выполняется при меньших отношениях. Пропитанная щепа нагревается при 150-180°С в течение 1-2 часов в периодической или непрерывной установке. После варки щепа становится мягкой и может быть разделена на волокна слабым механическим воздействием. Обычный метод разделения в периодической установке заключается в "выдувке варочного котла", при этом масса разделяется на волокна физическим воздействием на щепу, которая вытесняется из котла давлением пара, образованного при нагревании котла до высокой температуры.

Волокна технической древесной целлюлозы удерживают по массе жидкости в количестве несколько раз большем своей собственной. Свободный отработанный щелок удаляется из целлюлозы прессованием и/или противоточной промывкой. Отработанные щелока концентрируют и сжигают как топливо и для повторного использования неорганических ионов. Эффективная промывка является решающей для экономики и контроля загрязнения стоков при последующей отбелке. Поскольку отработанные щелока концентрируются и сжигаются, энергетическая эффективность повышается при уменьшении разбавления щелоков при промывке. Были разработаны сложные схемы рециркуляции воды и противоточной промывки.

Небеленые сульфатные целлюлозы имеют коричневый цвет упаковочной бумаги и гофрированного картона. Спектры отражения в ближнем ультрафиолете (УФ) и видимой области показывают, что при нагревании древесины со щелочью происходит быстрое образование функциональных групп, имеющих общий максимум поглощения около 420 нм (рис.6). Это наблюдение продемонстрировано для нескольких древесных пород и, видимо, является общим (9). По мере протекания варки целлюлоза становится темнее, пока она не будет содержать около 10% остаточного лигнина (10). При проведении варки дальше этой точки масса становится светлее (рис.7). Источник коричневой окраски сульфатной целлюлозы точно не известен. Предполагается, что свой вклад вносят продукты деструкции углеводов, лигнина и экстрактивных веществ.

рН- лигнин становится менее растворимым в водных растворах и осаждается на волокнах и внутри них. Наконец, структура остаточного лигнина сама по себе химически отличается от структуры первоначального лигнина древесины. Например, формальдегид, образующийся при варке, способствует поперечному сшиванию остаточного лигнина. Также полагают, что устойчивость ковалентных связей между лигнином и углеводами к действию в щелочной среде затрудняет удаление остаточного лигнина из целлюлозы (13).

Для диффузии лигнина из волокон при пропитке водой небеленой сульфатной целлюлозы требуется длительное время, однако, некоторые исследователи обратили внимание на то, что эта диффузия значительно усиливается при обработке небеленой целлюлозы горячей щелочью (14-16). Помимо возрастания растворимости деструктированного лигнина при щелочной обработке увеличивается раскрытие микропор, что позволяет высвобождаться ранее удерживаемым в "ловушке" молекулам лигнина. Снижение содержания лигнина может достигать 10 единиц числа Каппа, и такая обработка может быть применена на предприятиях, где нет условий для продленной делигнификации.

В попытках использовать продленную делигнификацию при варке, в дополнение к факторам, влияющим на растворимость и диффузию лигнина, изучались условия, влияющие на селективность процесса варки. Селективность может быть определена как отношение скоростей процесса делигнификации и реакции расщепления цепей молекул полисахаридов. Общая кинетика этих двух типов процессов может быть выражена в виде дифференциальных уравнений скоростей соответствующие энергии активации могут быть определены обычными методами. Энергии активации различных стадий делигнификации составляют: начальной - 60 кДж/моль, основной - 150 кДж/моль и заключительной - 120 кДж/моль (17). Соответствующая энергия активации для процесса снижения вязкости целлюлозы равна 179 кДж/моль (18). Из приведенных данных следует, что для оптимальной селективности температура должна быть невысокой, особенно в начале и конце варки, концентрацию щелочи следует поддерживать постоянной, концентрация гидросульфид-иона должна быть максимально возможной, особенно в начале основной стадии делигнификации, а концентрации растворенного лигнина и ионов натрия в щелоке должны быть по возможности низкой, особенно в конечной стадии (17). Эти принципы используются в промышленности для получения прочных целлюлоз со значительно более низким содержанием лигнина перед отбелкой. Такой процесс называют "продленной делигнификацией".

Для осуществления продленной делигнификации применяется различное оборудование, как периодического, так и непрерывного действия, оба типа процессов имеют свои собственные вариации. Типичная модифицированная периодическая система варки использует указанную ниже последовательность приемов (19). Щепа может быть сначала обработана теплым черным щелоком (отработанным варочным раствором) для начала нагревания и пропитки остаточными варочными химикатами. Для быстрого нагревания щепы до температуры близкой к температуре варки в присутствии относительно высокого содержания щелочи вводится горячий черный щелок. Добавлением горячего белого щелока (свежего варочного раствора) и нагреванием паром устанавливают необходимые концентрации варочных химикатов и температуру, которые поддерживают одинаковыми по всему варочному котлу циркуляцией щелока. После варки черный щелок заменяется холодным промывным фильтратом. Сваренная щепа затем выдувается или перекачивается из котла. Сообщают, что перекачивание по сравнению с выдувкой вызывает меньше механического повреждения волокна (20).

При модифицированной непрерывной варке система подачи вводит 60-~70% щелока на стадиях пропитки и начальной делигнификации. Остальная часть щелока вводится в различных точках циркуляции щелока для поддержания однородной концентрации щелочи. Черный щелок удаляется в конце варки для снижения концентрации лигнина и ионов натрия. Дальнейшая модернизация состоит в добавке белого щелока в циркуляционную зону горячей промывки. Это может продлить общее время варки до 5 ч и позволяет снизить температуру варки. В похожей модификации температуру зоны промывки поднимают настолько, чтобы одна и та же температура поддерживалась по всему котлу. Эта температура может быть примерно на 10°С ниже температуры обычной варки, при которой варка должна быть завершена перед стадией промывки (21).

Числа Каппа небеленых целлюлоз от продленной варки составляют 20-22 единицы для древесины хвойных пород по сравнению с числом Капп; около 30 при обычной сульфатной варке. Прочностные свойства целлюлоз с низкими числами Каппа равны прочностным свойствам обычных целлюлоз; эти свойства сохраняются во время отбелки.

Модифицирование химикатов сульфатной варки

Несмотря на то, что процесс сульфатной варки хорошо разработан и высокоэффективен, он все таки имеет некоторое нежелательные характерные черты. Выход волокна низкий, так как гемицеллюлозы.и часть целлюлозы растворяется вместе с лигнином. Методы продленной варки могут приводить к дополнительной потере выхода, сульфатный процесс является также капиталоемким и значительная часть расходов приходится на удержание летучих сернистых веществ, загрязняющих окружающую среду. Было предложено много модификаций сульфатной варки, но только две из них были осуществлены в промышленном масштабе: полисульфидная и с антрахиноном. По мере роста интереса к методам продленной варки произошла переоценка модифицированных сульфатных процессов.

Добавка серы (полисульфидная варка)

При добавлении элементной серы к раствору сульфида натрия и гидроксида натрия сера растворяется и образует смесь соединений общей формулы Na2Sх где х равно 2-5 в зависимости от условий равновесия и количества добавленной серы. Сера в виде Na2Sх является окислявшим агентом и в условиях сульфатной варки окисляет восстанавливающие концевые звенья полисахаридов, стабилизируя их к действию варочных реагентов. Поскольку при этом сохраняется больше гемицеллюлоз, то целлюлоза получается с большим выходом. Экспериментально установлено, что возрастание выхода при добавке полисульфида пропорционально количеству добавленной серы вплоть до 10% от древесины. В процессе МОХy (Mead Corp.) полисульфид образуется из белого сульфатного щелока каталитическим окислением кислородом сульфида натрия, обычно присутствующего в растворе. Этим устраняется необходимость в дополнительной сере, но ее общее количество ограничивается серой, содержащейся в Na2S2. В этих условиях достигается выигрыш в выходе в 2-2,5% от древесины и выделение сернистых веществ уменьшается вследствие снижения количества Na2S (22). Из-за потерь в выходе при продленной варке с высокой эффективной щелочью интерес к полисульфидной варке снова возродился (23). В непрерывных системах продленной варки применение полисульфида приводит к возрастанию как выхода, так и прочностных свойств (24). Хвойные целлюлозы с числом Каппа 15 могут быть получены с прочностными свойствами целлюлоз, полученных продленной модифицированной варкой, но с выходом на 3% выше.

Глава 2. ПЕРЕРАБОТКА СУЛЬФАТНОГО И СУЛЬФИТНОГО ЩЕЛОКОВ

В зависимости от степени делигнификации целлюлозы и расхода щелочи на варку количество черного щелока после варки и промывки целлюлозы составляет 7--10 м3 на 1 т целлюлозы, при этом массовая доля сухих веществ в щелоке перед упариванием составляет 10--15%. Содержащиеся в черном щелоке летучие соединения в процессе упаривания частично удаляются, потери же серы достигают 12--15 кг/т целлюлозы. Одним из способов снижения потерь серы является окисление щелока кислородом воздуха, при этом уменьшается корродирующее действие щелока, а также загрязнение воздуха токсичными веществами.

Страницы: 1, 2


ИНТЕРЕСНОЕ



© 2009 Все права защищены.