реферат бесплатно, курсовые работы
 

Автоматизированное производство

Автоматизированное производство

1. Особенности проектирования технологических процессов в условиях автоматизированного производства

Основой автоматизации производства являются технологические процессы (ТП), которые должны обеспечивать высокую производительность, надежность, качество и эффективность изготовления изделий.

Характерной особенностью ТП обработки и сборки является строгая ориентация деталей и инструмента относительно друг друга в рабочем процессе (первый класс процессов). Термообработка, сушка, окраска и прочее в отличие от обработки и сборки не требуют строгой ориентации детали (второй класс процессов).

ТП классифицируют по непрерывности на дискретные и непрерывные.

Разработка ТП АП по сравнению с технологией неавтоматизированного производства имеет свою специфику:

Автоматизированные ТП включают не только разнородные операции механической обработки резанием, но и обработку давлением, термообработку, сборку, контроль, упаковку, а также транспортно-складские и другие операции.

Требования к гибкости и автоматизации производственных процессов диктуют необходимость комплексной и детальной проработки технологии, тщательного анализа объектов производства, проработки маршрутной и операционной технологии, обеспечения надежности и гибкости процесса изготовления изделий с заданным качеством.

При широкой номенклатуре изделий технологические решения многовариантны.

Возрастает степень интеграции работ, выполняемых различными технологическими подразделениями.

Основные принципы построения технологии механообработки в АПС

Принцип завершенности. Следует стремиться к выполнению всех операций в пределах одной АПС без промежуточной передачи полуфабрикатов в другие подразделения или вспомогательные отделения.

Принцип малооперационной технологии. Формирование ТП с максимально возможным укрупнением операций, с минимальным числом операций и установок в операциях.

Принцип «малолюдной» технологии. Обеспечение автоматической работы АПС в пределах всего производственного цикла.

Принцип «безотладочной» технологии. Разработка ТП, не требующих отладки на рабочих позициях.

Принцип активно-управляемой технологии. Организация управления ТП и коррекция проектных решений на основе рабочей информации о ходе ТП. Корректироваться могут как технологические параметры, формируемые на этапе управления, так и исходные параметры технологической подготовки производства (ТПП).

Принцип оптимальности. Принятие решения на каждом этапе ТПП и управления ТП на основе единого критерия оптимальности.

Помимо рассмотренных для технологии АПС характерны и др. принципы: компьютерной технологии, информационной обеспеченности, интеграции, безбумажной документации, групповой технологии.

2. Типовые и групповые ТП

Типизация технологических процессов для сходных по конфигурации и технологическим особенностям групп деталей предусматривает их изготовление по одинаковым ТП, основанным на применении наиболее совершенных методов обработки и обеспечивающим достижение наивысшей производительности, экономичности и качества. Основа типизации -- правила обработки отдельных элементарных поверхностей и правила назначения очередности обработки этих поверхностей. Типовые ТП находят применение, главным образом, в крупносерийном и массовом производстве.

Принцип групповой технологии лежит в основе технологии переналаживаемого производства -- мелко- и среднесерийного. В отличие от типизации ТП при групповой технологии общим признаком является общность обрабатываемых поверхностей и их сочетаний. Поэтому групповые методы обработки характерны для обработки деталей с широкой номенклатурой.

И типизация ТП, и метод групповой технологии являются основными направлениями унификации технологических решений, повышающей эффективность производства.

Классификация деталей

Классификацию производят в целях определения групп технологически однородных деталей для их совместной обработки в условиях группового производства. Выполняют ее в два этапа: первичная классификация, т. е. кодирование деталей обследуемого производства по конструктивно-технологическим признакам; вторичная классификация, т. е. группирование деталей с одинаковыми или несущественно отличающимися признаками классификации.

При классификации деталей нужно учитывать следующие признаки: конструктивные -- габаритные размеры, массу, материал, вид обработки и заготовки; число операций обработки; точностные и другие показатели.

Группирование деталей выполняют в такой последовательности: выбор совокупности деталей на уровне классов, например тела вращения для механообрабатывающего производства; выбор совокупности деталей на уровне подкласса, например детали типа вала; классификация деталей по комбинации поверхностей, например валы с комбинацией гладких цилиндрических поверхностей; группирование по габаритным размерам с выделением областей с максимальной плотностью распределения размеров; определение по диаграмме областей с наибольшим числом наименований деталей.

Технологичность конструкций изделий для условий АП

Конструкция изделия считается технологичной, если для его изготовления и эксплуатации требуются минимальные затраты материалов, времени и средств. Оценка технологичности проводится по качественным и количественным критериям отдельно для заготовок, обрабатываемых деталей, сборочных единиц.

Детали, подлежащие обработке в АП, должны быть технологичны, т. е. просты по форме, габаритам, состоять из стандартных поверхностей и иметь максимальный коэффициент использования материала.

Детали, подлежащие сборке, должны иметь как можно больше стандартных поверхностей соединений, простейших элементов ориентации сборочных единиц и деталей.

3. Особенности проектирования технологических процессов изготовления деталей на автоматических линиях и станках с ЧПУ

Автоматическая линия -- это непрерывно действующий комплекс взаимосвязанного оборудования и системы управления, где необходима полная временная синхронизация операций и переходов. Наиболее эффективными методами синхронизации являются концентрация и дифференциация ТП.

Дифференциация технологического процесса, упрощение и синхронизация переходов -- необходимые условия надежности и производительности. Чрезмерная дифференциация приводит к усложнению обслуживающего оборудования, увеличению площадей и объема обслуживания. Целесообразная концентрация операций и переходов, не снижая практически производительность, может быть осуществлена путем агрегатирования, применением многоинструментальных наладок.

Для синхронизации работы в автоматической линии (АЛ) определяется лимитирующий инструмент, лимитирующий станок и лимитирующий участок, по которым устанавливается реальный такт выпуска АЛ (мин) по формуле

где Ф - действительный фонд работы оборудования, ч; N--программа выпуска, шт.

Для обеспечения высокой надежности АЛ разделяют на участки, которые связаны друг с другом через накопители, осуществляющие так называемую гибкую связь между участками, обеспечивая независимую работу смежных участков в случае отказа на одном из них. Внутри участка сохраняется жесткая связь. Для оборудования с жесткой связью важно планировать время и длительность плановых остановок.

Станки с ЧПУ дают высокую точность и качество изделий и могут использоваться при обработке сложных деталей с точными ступенчатыми или криволинейными контурами. При этом снижается себестоимость обработки, квалификация и число обслуживающего персонала. Особенности обработки деталей на станках с ЧПУ определяются особенностями самих станков и в первую очередь их системами ЧПУ, которые обеспечивают:

сокращение времени наладки и переналадки оборудования; 2)увеличение сложности циклов обработки; 3) возможность реализации ходов цикла со сложной криволинейной траекторией; 4) возможность унификации систем управления (СУ) станков с СУ другого оборудования; 5) возможность использования ЭВМ для управления станками с ЧПУ, входящими в состав АПС.

Основные требования к технологии и организации механической обработки в переналаживаемых АПС на примере изготовления основных типовых деталей

Для разработки технологии в АПС характерен комплексный подход -- детальная проработка не только основных, но и вспомогательных операций и переходов, включая транспортировку изделий, их контроль, складирование, испытания, упаковку.

Для стабилизации и повышения надежности обработки применяют два основных метода построения ТП:

использование оборудования, обеспечивающего надежную обработку почти без участия оператора;

регулирование параметров ТП на основе контроля изделий в ходе самого процесса.

Для повышения гибкости и эффективности в АПС используют принцип групповой технологии.

4. Особенности разработки ТП автоматизированной и роботизированной сборки

Автоматизированная сборка изделий выполняется на сборочных автоматах и АЛ. Важным условием разработки рационального ТП автоматизированной сборки является унификация и нормализация соединений, т. е. приведение их к определенной номенклатуре видов и точностей.

Главным отличием роботизированного производства является замена сборщиков сборочными роботами и выполнение контроля контрольными роботами или автоматическими контрольными устройствами.

Роботизированная сборка должна выполняться по принципу полной взаимозаменяемости или (реже) по принципу групповой взаимозаменяемости. Исключается возможность подгонки, регулировки.

Выполнение операций сборки должно проходить от простого к сложному. В зависимости от сложности и габаритов изделий выбирают форму организации сборки: стационарную или конвейерную. Состав РТК -- это сборочное оборудование и приспособления, транспортная система, операционные сборочные роботы, контрольные роботы, система управления.

При разработке ТП сборки в РТК предпочтительна высокая концентрация операций, определяющая модели роботов, их функции, точность, оперативность, быстродействие. Особенно важно уточнить временные связи элементов РТК, так как и они могут определить операционные возможности, модели и количество сборочных промышленных роботов (ПР). С этой целью возможно построение циклограммы как отдельных роботизированных рабочих мест и ПР, так и всего РТК в целом.

Обучаемые роботы -- это роботы, которые могут приспосабливаться к различным случайным факторам, сопровождающим запрограммированную работу. Эта приспособляемость выражается в корректировке своей же программы на основе полученного «опыта» -- результатов анализа и классификации возникающих отклонений и методов их устранения.

5. Производительность АС

Эффективность автоматизации определяется, прежде всего, экономической эффективностью, а также взаимосвязью технических и экономических показателей производства. Производительность труда и коэффициент роста производительности труда являются обобщенными показателями автоматизированного производства (АП).

Методы расчета и оценки производительности автоматизированных систем

Производительность определяется числом годных деталей, изделий, комплектов, выпускаемых машиной в единицу времени. Время обработки детали машиной является величиной, обратной производительности.

При расчете, анализе и оценке производительности автоматизированного оборудования с учетом разных видов затрат времени используют четыре вида ее показателей.

1. Технологическая производительность К -- максимальная теоретическая производительность при условии бесперебойной работы машины и обеспечения ее всем необходимым:

.

2. Цикловая производительность Qц -- теоретическая производительность машины с реальными холостыми и вспомогательными ходами и при отсутствии простоев (Уtпр = 0):

,

3. Техническая производительность Qт -- теоретическая производительность машины с реальными холостыми ходами и учетом ее собственных простоев Уtc, связанных с выходом из строя инструментов, приспособлений, оборудования, т.е. при условии tх > 0, tвсп > 0 и Уtс > 0:

.

4. Фактическая производительность Qф -- производительность, учитывающая все виды потерь:

.

Чем чаще и длительнее простои, тем ниже производительность.

Производительность автоматических линий с разным агрегатированием

На однопоточных линиях последовательного агрегатирования концентрируют разноименные операции ТП, последовательно выполняемые для каждого изделия.

Такие линии могут иметь жесткую межагрегатную связь без межоперационных накопителей заделов или гибкую связь с установкой таких накопителей.

Техническая производительность линии с жесткой связью

,

где tp -- время рабочих ходов цикла, определяемое длительностью обработки на лимитирующей позиции.

ВАЛ параллельного агрегатирования концентрируют одноименные операции дифференцированного технологического процесса, выполняемые на р изделиях. За время рабочего цикла Тц выдается р изделий, следовательно цикловая производительность таких линий

.

В условиях массового производства используются две основные модификации этих линий:

1) линии из автоматов дискретного последовательного действия, работающих параллельно;

2) линии из автоматов параллельного действия, работающих последовательно.

Для линий первой модификации техническая производительность

.

Для линий второй модификации техническая производительность

.

Если многопоточная АЛ разделяется на участки-секции по методу равных потерь, то расчет производительности целесообразно проводить по выпускному участку

,

где р -- число потоков выпускного участка; Тц -- длительность рабочего цикла выпускного участка; В -- внецикловые потери одной рабочей позиции; q -- число рабочих позиций на выпускном участке; nу -- число участков в линии; W -- коэффициент возрастания простоев выпускного участка из-за неполной компенсации отказов предыдущих участков.

6. Надежность в автоматизированном производстве

Надежность -- это способность машин и механизмов выполнять заданные функции, сохраняя во времени значения эксплуатационных показателей в заданных пределах, соответствующих установленным режимам и условиям использования. Для автоматизированных систем надежность -- это способность к бесперебойному выпуску годной продукции в установленном программой объеме в течение всего срока службы.

Основными свойствами машин, определяющими надежность, являются безотказность, долговечность и ремонтопригодность.

Показатели и методы оценки надежности

Показатели надежности делятся на частные, которые оценивают безотказность, ремонтопригодность, долговечность по отдельности, и комплексные (обобщенные), которые оценивают все три свойства.

Частным показателем безотказности является функция надежности P(t)

,

где щ(t) -- параметр потока отказов, характеризующий вероятность возникновения отказов в единицу времени или за рабочий цикл; Т -- период эксплуатации системы.

Технический ресурс R -- равен суммарной наработке за весь срок службы Т от ввода в эксплуатацию до предельного состояния (разрушение, потеря точности):

,

где tрабi -- i - я наработка на отказ; n -- число отказов системы за период T ее эксплуатации; иcpi -- среднее время устранения i - го отказа, определяемое ремонтопригодностью системы.

Надежность сложных многоэлементных систем

При расчленении сложной системы на отдельные элементы, для каждого из которых можно определить вероятность безотказной работы, для расчета надежности широко используют структурные схемы. В этих схемах каждый i - й элемент характеризуется своей вероятностью Pi безотказной работы в течение заданного периода времени. Исходя из этих данных, определяют вероятность безотказной работы P(t) всей системы.

Вероятность безотказной работы такой системы при независимости отказов равна произведению вероятностей безотказной работы ее элементов:

.

Для повышения надежности сложных систем можно применять резервирование, когда при выходе из строя одного из элементов дублер выполняет его функции, и элемент не прекращает своей работы.

Технологическая надежность оборудования

Технологическая надежность -- это свойство оборудования сохранять значения показателей, определяющих качество осуществления технологического процесса, в заданных пределах и во времени.

К показателям качества технологического оборудования относятся его геометрическая точность, жесткость, виброустойчивость и другие показатели, которые определяют точность обработки, качество поверхности и физические характеристики материала обрабатываемой детали. К наиболее действенным методам повышения технологической надежности оборудования относится метод автоматической подналадки и саморегулирования его параметров. При реализации этого метода изменившиеся параметры автоматически восстанавливаются за счет систем саморегулирования, структура которых зависит от скорости воздействия разных процессов на параметры оборудования.

7. Контроль и диагностика в условиях автоматизированного производства

В основе мер обеспечения надежной работы автоматизированных систем лежит непрерывный или периодический контроль за ходом технологических процессов, реализуемых в этих системах. Для реализации этих функций в современном производстве используются микропроцессоры, лазерные системы и др.

Контроль -- это проверка соответствия объекта установленным техническим требованиям. Под объектом технического контроля понимаются подвергаемая контролю продукция, процессы ее создания, применения, транспортирования, хранения, технического обслуживания и ремонта, а также соответствующая техническая документация.

Следовательно, объектом может быть как продукция, так и процесс ее создания.

Важным условием эффективной работы в автоматизированном режиме и быстрого восстановления работоспособности оборудования является его оснащение средствами диагностики.

Организация автоматизированного контроля в производственных системах

Контроль в АП может быть межоперационным (промежуточным), операционным (непосредственно на станке), послеоперационным, окончательным. Автоматизированному контролю должны подвергаться все элементы технологической системы: деталь, режущий инструмент, приспособление, само оборудование. Предпочтительными являются методы прямого контроля, хотя методы косвенного контроля шире используются при контроле инструментов, диагностике состояния оборудования.

Контроль в процессе обработки является одной из наиболее активных форм технического контроля, так как позволяет повысить качество выпускаемой продукции при одновременном увеличении производительности труда. Поэтому разрабатываются самонастраивающиеся системы управляющего контроля.

Контроль самонастраивающийся управляющий -- это управляющий контроль, при котором на основе информации, получаемой при изменяющихся условиях работы, автоматически изменяются параметры настройки средства контроля до обеспечения заданной точности при произвольно меняющихся внешних и внутренних возмущениях.

Контроль деталей и изделий в автоматизированных системах

Непосредственно на участке механической обработки осуществляют контроль трех видов:

* установки заготовки в приспособление;

* размера изделия непосредственно на станке;

* выходной контроль детали.

Контроль установки заготовки в приспособление может осуществляться на конвейере перед станком или на станке непосредственно перед обработкой. В первом случае могут использоваться датчики положения, расположенные на конвейере, или специальные измерительные установки с роботами. Бесконтактные датчики положения регистрируют отклонение действительного положения измеряемой поверхности от запрограммированного или разность условной базы и измеряемой поверхности (датчики касания).

Страницы: 1, 2, 3


ИНТЕРЕСНОЕ



© 2009 Все права защищены.