реферат бесплатно, курсовые работы
 

Автоматизация установки получения диамоний-фосфата

Автоматизация установки получения диамоний-фосфата

3

Реферат

1. Пояснительная записка: 44 стр., 3 чертежа, формата А1, 8 литературных источников.

2. Пояснительная записка состоит из трех разделов. В введении описывается назначение и цели курсового проектирования. В организационно-технологической части дается характеристика технологического процесса получения диаммоний-фосфата и описание установки барабанной-гранулятор сушилки. В технической части произведено краткое описание работы БГС, и функционально-технологической схемы установки БГС. Так же в этом разделе подбираются элементы контроля и управления технологической операции.

СОДЕРЖАНИЕ

стр

Реферат

Введение

Организационно-технологическая часть

Описание технологического процесса

Нормы технологического режима

Физико-химические свойства диаммонийфосфата

Описание технологической схемы

1. Прием и распределение фосфорной кислоты.

2. Первая стадия нейтрализации фосфорной кислоты

17

3. Подупаривание пульпы в выпарном аппарате

18

4. Вторая стадия нейтрализации фосфорной кислоты

20

5. Гранулирование и сушка продукта

21

6. Очистка отработанных топочных газов

23

7. Складирование и отгрузка готового продукта

25

Характеристики основного технологического оборудования

27

Выбор элементов и контроля технологической операции

28

Выбор схемы автоматизации контроля и управления температуры на выходе БГС.

28

Принцип работы схемы автоматизации

28

Выбор приборов для автоматизации, контроля и управления технологической операцией

28

Описание элементной базы

29

Блок преобразования сигнала термопар БПТ-22

29

Микроконтроллер АТ89С2051

33

Расходомер Метран - 335

35

Электромагнитный клапан ВН1М-1К

38

Источник питания постоянного тока БП96-24

39

Индикатор- регулятор технологический микропроцессорный двухканальный

Пневмоэлектрический преобразователь давления типа PC-28G

42

Заключение

43

Список литературы

44

Введение

Автоматизация - одна из ведущих отраслей науки и техники, развивается особенно динамично, она проникает во все сферы человеческой деятельности. Автоматизация качественно изменяет характер труда рабочих. В цехах с автоматизированным производством главной фигурой становится специалист новой формации - оператор, программист, рабочие других ранее не существующих профессий. Автоматизация технологических процессов является одним из решающих факторов повышения производительности и улучшений условий труда. Современными проектами производств в нефтепереработки, химии и нефтехимии, объектах производства минеральных удобрений, энергетики, и др., предусматривается комплексная автоматизация технологических процессов.

В ходе автоматизации производственных процессов сокращается тяжелый труд, увеличивается производительность труда: наступает новый этап машинного труда - автоматизация, - когда человек освобождается от непосредственного участия в производстве. Функции контроля и управления технологическими процессами предаются автоматическим установкам. Это приводит к улучшению основных показателей эффективности производства и снижению себестоимости продукции.

В течении ряда десятилетий под автоматикой понималось прежде всего выполнение без участия человека некоторых действий, однозначно связывающих причину и следствие.

Сущность современного этапа развития автоматизации можно было бы кратко охарактеризовать как переход от автоматизации «действий» к автоматизации «принятия решений». То есть, переход от так называемой цикловой (обеспечивающей выполнение чисто повторных действий) автоматики и автоматической стабилизации технологических режимов к использованию средств, обеспечивающих оптимизацию процессов, к осуществлению органической связи основного производственного оборудования с автоматикой.

В каждом производственном процессе, наряду с «вещественными потоками», существуют совершенно другие потоки, которые можно назвать «информационными». Они представляют собой некоторую первичную информацию о ходе производственного процесса и необходимы для контроля и управления. Эта информация передается на соответствующие пункты управления (например, в операторную, диспетчерскую и т. п.), где подвергается обработке и используется для принятия решений при управлении процессом.

Автоматическое регулирование технологических процессов на различных предприятиях позволяет получить высокую производительность при наименьших производственных затратах и высоком качестве продуктов. Однако системы автоматического регулирования оказываются не достаточно эффективными, если они спроектированы только на основании общих положений теорем автоматического регулирования.Для наиболее эффективной работы таких систем их необходимо проектировать с учетом особенностей технологических процессов, для которых они предназначены.

Довольно часто системы автоматики, разработанные непосредственно на предприятиях, работают вполне удовлетворительно. Это указывает с одной стороны, на то, что заводские инженеры в состоянии справится с решением таких задач, а с другой стороны - на то, что успешное проектирование систем автоматики иногда может быть выполнено без применения очень сложного математического аппарата. Такое положение объясняется наличием простых правил установки и наладки автоматических регуляторов.

В настоящее время рядом ученых в различных лабораториях и университетах созданы более прогрессивные принципы проектирования систем автоматического регулирования. Однако прелагаемые ими методы обычно не реализуются полностью, если в разработке систем не участвуют люди, которые должны их эксплуатировать. Проблемы, связанные с автоматическим регулированием технологических процессов, как правило, возникают на заводе, поэтому должны решаться на самом предприятии. До тех пор, пока проектировщики систем автоматического регулирования и эксплуатационники не будут связанны между собой, их общие проблемы остаются нерешенными. Несмотря на то, что решение задач автоматического регулирования возможно математическими методами, эти же задачи приближенно могут быть решены путем довольно не сложных приемов. Таким образом, уравнение высокого порядка и быстродействующие вычислительные машины целесообразно применять лишь там, где более простыми методами решить задачи не удается.

Блестяще разработанные общие положения о системах автоматического регулирования, а также математическое описание процесса регулирования сами по себе никакой ценности не представляют. Системы автоматического регулирования должны учитывать свойства технологического процесса с целью обеспечения оптимального протекания процесса.

Без глубокого знания технологического процесса, система регулирования не может быть спроектирована квалифицированно. Для автоматического регулирования необходимо максимально знать требования, предъявляемые к химико-технологическим процессам.

Организационно-технологическая часть

Описание технологического процесса.

Диаммонийфосфат - многокомпонентная система, полученная нейтрализацией экстракционной фосфорной кислоты аммиаком и состоящая в основном из фосфатов аммония сульфатов аммония, фосфатов железа, алюминия и др.

Стандартный ДАФ имеет состав 18-46-0. Это основной «товарный» сорт. В продукте с меньшим показателем N или Р205 основным веществом являются другие соли аммония и продукт не может считаться диаммонийфосфатом

Составы чистых солей - моноаммоний фосфата (МАФ) и ДАФ предоставлены ниже в таблице 1.

Таблица 1. Содержание питательных веществ чистых фосфатов аммония

Продукт

N,%

Р205, %

Моноаммоний фосфат (МАФ)

12.17

61.71

Диаммоний фосфат (ДАФ)

21.19

53.76

Производство диаммоний фосфата основано на двух стадийной нейтрализацией экстракционной фосфорной кислоты аммиаком с последующей грануляцией и сушкой аммонизированной пульпы.

Основные реакции нейтрализации фосфорной кислоты аммиаком экзотермические и протекают с выделение большого количества тепла. Взаимодействие аммиака с фосфорной кислотой на первой стадии нейтрализации идет по основной реакции:

NH3 + H3PO4 = NH4H2P04 + Q

Для получения диаммонийфосфатной пульпы проводят вторую стадию нейтрализации кислоты:

NH4H2P04 + NH3 = (NH4 )2НР04 + Q

Образованный двух замещенный фосфат аммония позволяет увеличить содержание азота в продукте до требуемой величины.

Степень нейтрализации фосфорной кислоты на первой стадии определяется ее концентрацией и технологической схемой производства.

Присутствующие в фосфорной кислоте растворимые примеси (Mg, Са, Fe, Al, SO4, F) образуют следующие соединения:

MgO + Н3Р04 + 2Н20 = MgHP04 3H20 + Q

СаО + Н3Р04 + Н20 = СаНР04 2Н20 + Q

Дикальцийфосфат и димагнийфосфат являются водонерастворимыми соединениями. Их образование приводит к снижению содержания усвояемых форм Р2О5 в продукте.

Соединения Fe и А1 образуют сложные комплексные соли с фосфорной кислотой, из которых соединения А1+3 находятся в продукте в усвояемой форме.

При нейтрализации сульфатов и фторидов образуются (NH4)2S04, (NH4 )2SiF6, которые являются основными носителями азота в удобрении.

Суммарная теплота реакций нейтрализации имеет такой же порядок, какой требуется для выпаривания воды из фосфорной кислоты.

МАФ и ДАФ обычно имеют очень хорошие физические характеристики, когда они производятся из экстракционной кислоты. Для обоих удобрений особенности хранения и особенности грануляции зависят от содержания примесей в кислоте. Гелеобразная структура некоторых примесей, способствуют грануляции, и служит в качестве кондиционера для предотвращения слеживания, даже при высоком содержании влаги в готовом продукте (примерно 3%). К этим примесям относятся в основном фосфаты алюминия. Добавление примесей, особенно соединений, содержащих алюминий, могут улучшить грануляцию и качество продукта, если в исходной кислоте их недостаточно. Добавление небольшого количества фосфоритов к фосфорной кислоте перед аммонизацией так же может улучшить грануляцию.

Одновременное влияние соединений алюминия, железа и магния имеет совокупный характер, Если одна примесь улучшает процесс, то этот эффект может компенсироваться отрицательным влиянием других примесей. На содержание лимоно-растворимых форм Р2О5 кроме содержания железа, алюминия, и магния большее влияние оказывают технологические параметры производства.

Для производства сорта 18-46-0 в качестве примеси улучшающей процесс может использоваться серная кислота в количестве примерно 50 кг/тонну. Без серной кислоты ДАФ с показателями 18.4%-18.8% N и 47.2%-47.5% усвояемого Р2О5 может быть получен, используя только очищенную фосфорную кислоту. Когда используется неочищенная кислота, полученная из некоторых низко сортных фосфоритов, то получить ДАФ сорта 18-46-0, может быть тяжело. Пример технологического режима производства ДАФ из Алжирских фосфоритов марки «В» приведен в таблице 2.

Упаривание пульпы после первой стадии является обязательной стадией производства. При упаривании пульпы теряется основная масса воды и на вторую стадию нейтрализации пульпа должна поступать с минимальной влажностью. Для предотвращения загустевания пульпы во время ее упаривания первую стадию нейтрализации следует вести до мольного отношения, при котором существует максимальная растворимость образующихся фосфатов аммония. На рис.1 показана зависимость растворимости фосфатов аммония от мольного отношения. Наибольшая растворимость фосфатов при мольном отношении 1.4, 1.5.

Оптимальная степень нейтрализации кислоты на первой стадии определяется тремя факторами: сохранение подвижности пульпы при ее упаривании, сохранение термической стабильности при ее упаривании и обеспечение минимальной влажности пульпы на выходе с выпарной установки.

При уменьшении мольного отношения в пульпе от 1.5 до 1.3 процесс упаривания пульпы при невысоких температурах протекает практически без разложения диаммонийфосфата.

Чем меньшая влажность пульпы, поступающая на грануляцию, тем ниже температура сушки.

Диаммонийфосфат термически нестойкое соединение. Наиболее интенсивно процесс разложения диаммонийфосфата протекает при его сушке впервые 15 мин. Причем, степень разложения тем больше, чем выше мольное отношение в продукте и температура сушильного агента. Одновременно происходит удаление влаги из продукта. Независимо от исходного содержания воды в продукте и его гранулометрического состава с максимальной скоростью влага удаляется в первые 15 минут сушки, а далее происходит подсушивание продукта.

При сушке гранул размером +2-3 с температурой отходящих газов 75. 100 и 125 температура продукта равняется соответственно 70-71,95-97 и 98-103 °С.

С повышением температуры сушильного агента от 75 до 125 °С мольное отношение NH3: H3PO4 в продукте снижается . За время сушки 45 мин. уменьшается с 1.5 до 1.1-1.2. При снижении температуры сушки до 100° за то же время мольное отношение NH3: H3PO4 уменьшается до 1.38.

Нормы технологического режима

Наименование стадии и потоков

Наименование параметра и единиц измерения

Номинальное значение или дипазон регулиро-вания с допустимыми отклонениями

Предел допустимых значений параметров

1

2

3

4

Прием и распределение фосфорной

кислоты

1. Участок нейтрализации фосфор-

ной кислоты аммиаком.

1.1. Подача фосфорной кислоты в аппарат САИ, дозатор поз.1

Плотность фосфорной кислоты, г/см3

1.290-1.310

Не менее 1.285

Массовая доля Р2О5, %

26-27

Не менее 25

Массовая концентрация твердых частиц,

г/дм3

не более 10

'

Первая стадия нейтрализации

2. Скоростной аммонизатор-

1. Температура пульпы, 0С

100-110

100-110

испаритель поз.2-2

2. рН пульпы на выходе из САИ

4.0-5.0

не более 5

3.Плотность пульпы на выходе из САИ

г/см3

1.290-1.340

1.290-1.340

Упаривание пульпы в выпарном аппарате

3. Выпарной аппарат поз.69

1.Плотность пульпы на выходе из

1.450-1.520

Не менее 1.450

выпарного аппарата, г/см3.

2. Температура пульпы, °С

70-85

Не более 90

Вторая стадия нейтрализации

4. Сборник пульпы поз.70А

1. Температура пульпы, 0С.

85-105

Не более 105

*1

2. Плотность пульпы, г/см .

1.450-1.540

Не более 1.540

3. Мольное отношение

4. рН пульпы

5. Влажность пульпы, %

1.8-2.0 7.7-8.2 25-30

1.8-2.0

7.7-8.2

не более 35

Гранулирование и сушка пульпы

5. Топочные газы: -перед БГС поз.44-1,2

1. Температура газов, 0С.

360-450

Не более 450 °С

6. Отходящие газы после БГС поз.44-1,2

1. Температура отходящих газов, 0С

70-85

Не более 90

7. Диаммоний фосфат гранулиро-ванный в течке после БГС.

1. Температура, 0С

2. Массовая доля воды, %

65-80 0.5-2.0

Не более 85 Не более 2.0

Физико-химические свойства диаммонийфосфата.

Наименование показателей и единиц измерений

Значение физической величины с граничны-ми отклонениями

Источник информации

Высший сорт

Первый сорт

1. Массовая доля усвояемых фосфатов (Р205 усв), %

не менее 46

не менее 46

ТУУ-6-14005076 055-2000

2. Массовая доля водораствори-мых фосфатов (Р2О5 в.р), %

не менее 43

не менее 43

3. Массовая доля общего азота

(N),%

не менее 18

не менее 17

4. Массовая доля воды, %

не более 1,8

не более 1,8

5. Гранулометрический состав Массовая доля гранул размером: менее 1 мм, % от 1 до 4 мм, % более 6 мм, %

не более 5

не менее 90

0

не более 5

не менее 90

0

6. Массовая доля кадмия, мг/кг

не более 27

не более 27

7. Массовая доля свинца, мг/кг

не более 25

не более 25

8. Массовая доля мышьяка, мг/кг

не более 16

не более 16

9. Для розничной торговли

Полностью проходит через сито диаметром 6 мм по ГОСТ 3826

10. Статическая прочность гранул, МПА (кгс/см2)

не менее 3 (30)

не менее 3 (30)

11. Рассыпчатость, %

100

100

12. Суммарная эффективная ак-тивность естественных радио-нуклидов для всех марок, Бк/кг

не более 1860

не более 1860

Страницы: 1, 2, 3


ИНТЕРЕСНОЕ



© 2009 Все права защищены.