реферат бесплатно, курсовые работы
 

Автоматическая система управления процессом испытаний электропривода лифтов

эффект вытеснения токов в проводниках ротора пренебрежимо мал ввиду того, что частота токов ротора при питании от ПЧ ограничена рабочим участком механической характеристики.

На основании второго закона Кирхгофа и с учётом вышеприведённых допущений, уравнения для ЭДС в обмотках статора и ротора АД можно представить в следующем виде:

(2.1)

для цепей статора и

(2.2)

для цепей ротора.

В представленных системах уравнений приняты следующие обозначения:

=== - активные сопротивления фаз статора;

=== - активные сопротивления фаз ротора;

, , , , , - мгновенные фазные напряжения статора и ротора;

, , , , , - мгновенные фазные токи в обмотках статора и ротора;

, , , , , - потокосцепления обмоток статора и ротора.

Для связи между потокосцеплениями и токами в обмотках воспользуемся законом Ампера, тогда:

(2.3)

для статора

(2.4)

для ротора.

Уравнения потокосцеплений показывают зависимость от токов в каждой обмотке через взаимоиндукцию. В уравнениях (2.3 и 2.4) коэффициенты , , , , , являются собственными индуктивностями соответствующих обмоток, все остальные - индуктивности между соответствующими обмотками.

Не забывая о том, что системы уравнений (2.1 - 2.4) связывают исключительно скалярные величины, выражение для электромагнитного момента представим в следующем виде [60]:

,(2.5)

где это число пар полюсов рассматриваемого АД.

На основании второго закона Ньютона представим уравнение для движения и равновесия моментов на валу АД:

,(2.6)

где - момент инерции на валу АД, - угловая частота вращения ротора, - момент развиваемый АД и - момент приложенный к валу двигателя со стороны нагрузки.

Изначально АД является трёхфазной электрической машиной с неявнополюсным ротором. Анализируя режимы работы АД в составе нагрузочного моментного ЭП и совокупность принятых выше допущений можно предположить правомерность использования для математического описания эквивалентной двухфазной модели.

На пути упрощения математического описания АД оказался подходящим метод пространственного вектора, позволяющий существенно упростить и сократить вышеприведённую систему уравнений; метод позволяет связать уравнения (2.1 - 2.6) в единую систему с векторными переменными состояния. Суть метода состоит в том, что мгновенные значения симметричных трёхфазных переменных состояния (напряжение, токи, потокосцепления) можно математически преобразовать так, чтобы они были представлены одним пространственным вектором.

Представим систему уравнений с векторными переменными состояния для случая с произвольной ориентацией системы координат [21, 36]:

(2.7)

Здесь , , , , и - двухэлементные векторы напряжений, токов и потокосцеплений, представленные в произвольно ориентированной ортогональной (двухфазной) системе координат в виде составляющих по координатным осям. Переменная служит для задания произвольной частоты вращения координатной системы. Вспомогательная матричная константа j служит для «переворота» компонентов векторных переменных и позволяет упростить форму записи системы уравнений.

Раскрывая содержание пространственных векторов, получаем следующее:

,,,,

, , .(2.8)

Система координат с принудительной ориентацией по вектору потокосцепления ротора

При решении задач разработки систем управления для АД необходимо рассматривать его имитационную модель с позиций объекта оптимального управления.

В теории систем управления асинхронными электроприводами при моделировании АД нашел место уникальный принцип ориентации системы координат по вектору потокосцепления ротора.

В данном случае имитационная модель АД приобретает определенное сходство со структурной схемой машины постоянного тока, где возможно раздельное управление магнитным состоянием и моментом на валу двигателя.

Математически условие ориентации применительно) выражается следующим образом:

;;.

Уравнения, описывающие АД в системе координат с принудительной ориентацией по вектору потокосцепления ротора.

В системе представляет собой скольжение системы координат, а соответственно скорость её вращения. Данные параметры определяются в соответствии со следующими выражениями:

;.

В системе уравнений переменные с индексами «x» и «y» соответствуют компонентам пространственного вектора в координатной системе с ориентацией по вектору потокосцеплений ротора . С помощью правил создания и преобразования структурных схем, принятых в теории автоматического управления , представим систему уравнений в виде структурной схемы. На рис. представлена структурная схема, имитационной модели АД в системе координат с ориентацией по вектору потокосцепления ротора .

Рисунок 16 - Структурная схема имитационной модели АД в системе координат с ориентацией по вектору потокосцепления ротора

Модель АД, представленная на рис. удобна для реализации и расчёта в любом из прикладных программных продуктов, поддерживающих объектно-структурное моделирование систем (Simulink-Matlab, Windora и т.д.). Для исследования и проверки адекватности созданной модели АД удобно выполнить её реализацию в среде Simulink-Matlab. В данной системе симметричные трёхфазные напряжения, представленные в относительных единицах подвергаются преобразованию Кларка и поступают в виде компонентов пространственного вектора напряжений и на входы координатного преобразователя Парка-Горева. Формулы для координатного преобразования Парка-Горева, позволяющего реализовать переход от стационарной системы координат к вращающейся представлены ниже:

Здесь , - составляющие пространственного вектора напряжения статора , представленные в стационарной системе координат;

, - составляющие вектора напряжения статора , представленные во вращающейся системе координат;

- угол поворота вращающейся координатной системы (угол ориентации). Параметр связан с угловой скоростью вращения координатной системы благодаря следующему выражению:

.

Графически преобразование Парка-Горева иллюстрируется на рис.

Рисунок 17 - График преобразований Парка-Горева для связи между вращающейся и стационарной системой координат

Координатный преобразователь Парка-Горева сориентирован совместно с системой координат разработанной имитационной модели АД. Благодаря этому на входы модели по напряжению и поступают компоненты пространственного вектора напряжения, представленного во вращающейся системе координат.

3.2 Структурный и параметрический синтез регуляторов системы управления технологическим процессом

Системы векторного управления представляют собой класс систем автоматического управления ЭП переменного тока во вращающихся и определённым образом сориентированных системах координат с подчинённым регулированием переменных. Способ ориентации системы координат по вектору потокосцепления ротора управляемого АД делает схожим организацию системы векторного управления на структуру управления классическим ЭП постоянного тока с независимым возбуждением. Согласно анализу требований, предъявляемых к моментному ЭП, для управления АД в составе нагрузочного испытательного стенда наиболее подходящим способом является именно векторное управление с ориентацией системы координат по вектору потокосцепления ротора. В рамках синтеза управляющей системы предполагается разработка модифицированной системы векторного управления с учётом особенностей работы нагрузочного асинхронного ЭП в составе испытательного стенда.

При синтезе регуляторов для управления составляющими вектора

тока статора и потокосцеплением ротора использовался метод определения

желаемой передаточной функции с настройкой на модульный оптимум.

Для контуров управления частотой вращения и положением, ввиду минимизации ошибки по возмущению использована настройка на симметричный оптимум. По итогам синтеза регуляторов показатели качества в линеаризованной системе соответствуют ожидаемым значениям.

Контуры управления составляющими вектора тока статора

Для нахождения требуемой передаточной функции регулятора (p) выделим из всей системы ЭП отдельно взятый контур, рисунок 18 и сопоставим передаточную функцию объекта управления с желаемой с учётом используемой системы относительных единиц.

Рисунок 18 - Контур управления составляющей пространственного вектора тока статора

Согласно методике настройки на модульный оптимум, получаем выражение для передаточной функции регулятора:

,

где

- передаточная функция эталонного разомкнутого контура, оптимизированного на модульный оптимум, а - малая некомпенсируемая постоянная времени, определяющая быстродействие контура после оптимизации.

В итоге синтезирован пропорционально-интегральный регулятор со следующими параметрами:

- коэффициент усиления,

- постоянная времени интегрирования.

Для проверки соответствия показателей качества оптимизированного контура ожидаемым значениям, проведём расчёт переходных процессов

Рисунок 19 - График расчёта переходных процессов в оптимизированном контуре управления составляющей пространственного вектора тока

Рисунок 20 - Контур управления составляющей пространственного вектора тока статора

Таким образом, для контура управления составляющей пространственного вектора тока статора принимаем результаты оптимизации, полученные ранее при рассмотрении контура :

.

В итоге получаем пропорционально-интегральный регулятор со следующими параметрами:

- коэффициент усиления,

- постоянная времени интегрирования.

Рисунок 21 - График расчёта переходных процессов в оптимизированном контуре управления составляющей пространственного вектора тока

Контур управления потокосцеплением ротора

Рисунок 22 - Контур управления потокосцеплением ротора

В итоге для передаточной функции регулятора получаем следующее выражение:

.

В итоге синтеза оказался получен пропорционально-интегральный регулятор со следующими параметрами:

(3.31)

- коэффициент усиления и

(о.е.) (3.32)

- постоянная времени интегрирования регулятора потокосцепления.

Рисунок 23 - График расчёта переходных процессов в оптимизированном контуре управления потокосцеплением ротора

Контур управления частотой вращения

При оптимизации контура управления частотой вращения необходимо использовать настройку на симметричный оптимум, так как в данном случае объект управления содержит интегральное звено, что приводит к необходимости использования пропорционального регулятора при настройке на модульный оптимум и делает невозможным получение системы астатической по возмущению. Именно поэтому при оптимизации контура скорости используем настройку на симметричный оптимум, а для приближения характеристик контура после оптимизации к характеристикам, соответствующим настройке на модульный оптимум на входе контура установим фильтр в виде апериодического звена.

Рисунок 24 - Контур управления частотой вращения

Согласно методике настройки на симметричный оптимум, получаем выражение для передаточной функции регулятора скорости

,

где

- это передаточная функция эталонного разомкнутого контура скорости, оптимизированного на симметричный оптимум, а - малая некомпенсируемая постоянная времени, определяющая быстродействие контура;

- это передаточная функция замкнутого контура управления составляющей вектора тока , в данном случае являющаяся подчинённым контуром для контура частоты вращения.

Тогда итоговое выражение для передаточной функции регулятора в контуре скорости получаем в следующем виде:

.

Выражение передаточной функции регулятора имеет «неудобный» вид для синтеза регулятора. Предлагается с учётом некоторых допущений, связанных с пренебрежением постоянными времени высших порядков выполнить ряд преобразований над числителем для его представления в более «удобном» виде.

.

С учётом (3.41), выражение (3.40) преобразуем к следующему виду:

.

Рисунок 25 - График расчёта переходных процессов в оптимизированном контуре управления частотой вращения ротора

В итоге синтеза оказался получен пропорционально-интегральный регулятор со следующими параметрами:

(о.е.)

- коэффициент усиления,

(о.е.)

- постоянная времени интегрирования регулятора скорости,

(о.е.)

- постоянная времени входного фильтра.

Контур управления положением

Согласно иерархии подчинённого регулирования для контура управления частотой вращения внешним является контур управления положением. При оптимизации контура управления положением предполагаем использование настройки на симметричный оптимум.

Рисунок 26 - Контур управления положением

Согласно методике настройки на симметричный оптимум, получаем необходимое выражение для передаточной функции регулятора

,

где

это передаточная функция эталонного разомкнутого контура положения, оптимизированного на симметричный оптимум, а - малая некомпенсируемая постоянная времени, определяющая быстродействие данного контура;

это передаточная функция замкнутого контура управления частотой вращения ротора , настроенного на симметричный оптимум с фильтром на входе и являющегося подчинённым относительно контура положения.

В стремлении понизить порядок передаточной функции объекта управления допустимо не учитывать постоянные времени высших порядков. Применительно к замкнутому контуру скорости это выглядит следующим образом:

.

C учётом допущения (3.51) получаем следующее выражение для передаточной функции регулятора в контуре положения:

.

Для величины малой некомпенсируемой постоянной времени в контуре положения принимаем значение

т.е., что позволяет упростить структуру управляющего регулятора.

Итоговое выражение для регулятора положения приобретает следующий вид:

.

По итогам синтеза оказался получен пропорционально-интегральный регулятор со следующими параметрами:

(о.е.)

- коэффициент усиления,

(о.е.)

- постоянная времени интегрирования регулятора скорости,

(о.е.)

- постоянная времени входного фильтра.

Рисунок 27 - График расчёта переходных процессов в оптимизированном контуре управления положением

3.3 Разработка алгоритмов работы регуляторов системы управления технологическим оборудованием

Для решения задачи формирования нагрузочного момента, имитирующего усилия, прикладываемые к ЭП лифта со стороны технологического оборудования, используем специально разработанный модуль для имитации нагрузочных моментов с программной реализацией. Здесь и далее в работе под определением данного модуля будем подразумевать имитационный формирователь моментов нагрузки (ИФМН).

В соответствии с требованиями к работе испытательного стенда, сигнал на выходе ИФМН должен полностью имитировать рабочие режимы различных типов лифтов. Кроме того, ИФМН должен однозначно определять работу системы в одном из двух режимов: формирование нагрузочного момента в движении и при упоре, что требует наличия переключающего модуля, отвечающего за организацию переходов между указанными режимами. В данном случае задача формулируется следующим образом: для имитации нагрузочных усилий необходимо сформировать нагрузочный момент Мнагр в функции углового перемещения выходного вала ЭП . В случае отключения или остановки испытуемого ЭП, ИФМН должен предотвратить возможное «опрокидывание» моментного ЭП и выдать команду на переход в следящий режим с нулевым заданием или выполнить останов ЭП.

3.4 Компьютерное моделирование алгоритмов управления. Графическое представление результатов моделирования

После проведения оптимизации отдельных контуров системы управления необходимо провести проверку показателей качества всей системы нагрузочного ЭП. Данный режим не принимает во внимание различные нелинейности, присущие системе любого ЭП и предполагает рассмотрение системы в линеаризованном виде. На рисунке 28 представлена структурная схема линеаризованного асинхронного ЭП с векторным управлением на основе имитационной модели АД во вращающейся системе координат с ориентацией по вектору потокосцепления ротора, т.е. в данном случае и система управления, и модель АД, как управляемый объект, находятся в одной и той же вращающейся системе координат.

Исследование показателей качества имитационной модели ЭП в представленном виде позволяет проверить работоспособность и оценить взаимное влияние перекрёстных контуров управления потокосцеплением ротора и скорости. Используя программную среду Simulink-Matlab на базе структурной схемы рисунка 28 разработаем имитационную модель линеаризованного асинхронного ЭП с векторным управлением. На рисунке 29 представлен внешний вид имитационной модели в среде Simulink-Matlab для расчёта переходных процессов.

На рисунке 30 представлены графики переходных процессов при последовательной подаче задающего сигнала в контуры потокосцепления и скорости. В первую очередь ступенчатый сигнал задания поступает на вход контура потокосцепления, и только по окончании переходных процессов в данном контуре система формирует следующий задающий сигнал для контура скорости. Данная задержка позволяет ещё перед началом движения стабилизировать магнитное состояние АД и способствует приближению переходных процессов по характеру к переходным процессам в ЭП с двигателем постоянного тока независимого возбуждения. В теории асинхронного ЭП задержку с подачей задания в контур скорости подобного вида принято называть начальным намагничиванием.

Условия для проведения исследований на рисунке 30 соответствуют пуску ЭП без нагрузки и её последующему набросу в момент времени tнагр = 45 о.е. с моментом mнагр = 1.0 о.е., соответствующем номинальной нагрузке.

Анализ переходных процессов применительно к оценке взаимного влияния перекрёстных контуров потокосцепления ротора и скорости показывает, что наибольшее влияние оказывает переходный процесс в контуре скорости, вызывая отклонение потокосцепления ротора от установившегося значения на величину и . Относительно переходных процессов в контуре потокосцепления, можно заключить, что значительное влияние на отклонения в контуре скорости, как и ожидалось, отсутствует.

Рисунок 30 - Переходные процессы в линеаризованном асинхронном ЭП с векторным управлением на базе имитационной модели АД во вращающейся системе координат с ориентацией по вектору потокосцепления ротора

Для приближения условий исследования имитационной модели нагрузочного моментного ЭП к реальному объекту следует модернизировать линеаризованную систему с возможностью учёта нелинейностей обусловленных наложением всевозможных ограничений и задатчиков интенсивности.

Применительно к нагрузочному моментному асинхронному ЭП следует выделить следующие нелинейности: ограничение на выходе регуляторов, линейные задатчики интенсивности в каналах управления потокосцеплением ротора и скоростью, двухмассовая механическая система с упругой связью, зазоры в кинематической цепи механической передачи.

Используя в качестве основы линеаризованную структурную схему имитационной модели нагрузочного ЭП (рисунок 28) разработаем соответствующую систему с учётом указанных выше нелинейностей. Для проведения исследований и получения предварительной оценки качества функционирования разработанной системы в программной среде Simulink-Matlab создана имитационная модель асинхронного нагрузочного моментного ЭП с векторным управлением.

Рисунок 31 - Графики переходных процессов в системе нагрузочного моментного ЭП с векторным управлением при учёте нелинейностей для случая работы в режиме движения

На рисунке 31 представлены результаты исследования системы нагрузочного моментного ЭП с векторным управлением при учёте нелинейностей для случая работы в режиме движения.

На рисунке 32 представлены графики переходных процессов в имитационной модели моментного асинхронного ЭП при имитации нагрузочных усилий в режиме упора.

Анализ графиков переходных процессов на рисунке 31 и рисунке 32 показывает, что нагрузочный моментный ЭП в полном объёме выполняет имитационное формирование усилий, прикладываемых со стороны ЭП лифта и соответствует требованиям, предъявляемым к нагрузочному ЭП при проведении испытаний электроприводов лифтов.

Рисунок 32 - Графики переходных процессов в имитационной модели моментного асинхронного ЭП при имитации нагрузочных усилий ЗА в режиме упора

Заключение

В представленном курсовом проекте была спроектирована автоматизированная система управления процессом испытаний электропривода лифтов. Испытательное нагрузочное устройство позволяет сымитировать диаграмму эксплуатационных усилий, прикладываемых со стороны лифтов различных типов.

Целью работы было получение начальных навыков проектирования автоматизированных систем управления электроприводов.

Разрабатываемая система управления позволит автоматизировать технологический процесс испытания электропривода лифтов, существенно снизить затраты на проведение испытаний. Данная система особенно актуальна при серийном производстве ЭП лифтов. Также данная система построена на микропроцессорной системе управления, позволяющей значительно улучшить качество управления.

В ходе выполнения работы были выбраны аппаратные средства на верхнем, среднем и нижнем уровне управления. Произведёт выбор программного обеспечения для программирования логического контроллера и преобразователя частоты.

Выполнена оптимизация контуров системы векторного управления применительно к режимам работы в составе нагрузочного ЭП с учётом допущений относительно постоянных времени высших порядков в передаточных функциях объектов управления, что позволяет существенно упростить синтез структуры и параметров регуляторов. Предложенная методика позволяет получить от системы показатели качества, приближенные к ожидаемым значениям, а для уменьшения взаимного влияния между контурами управления потокосцеплением ротора и скорости предложена методика разделения перекрёстных контуров во временной области благодаря выбору в смежных контурах различных малых некомпенсируемых постоянных времени.

С помощью метода имитационного моделирования произведена проверка функционирования разработанной системы векторного управления асинхронным моментным ЭП. Анализ полученных результатов применительно к оценке взаимного влияния перекрёстных контуров потокосцепления ротора и скорости показывает, что для потокосцепления ротора максимальные отклонения не превышают величины при изменении частоты вращения и при приложении возмущения со стороны нагрузки.

Применительно к контуру скорости, сколько-нибудь значительное влияние со стороны контура потокосцепления ротора отсутствует.

Результаты исследований работы имитационной модели системы нагрузочного моментного ЭП с векторным управлением при учёте нелинейностей для случая работы в режиме движения и при упоре доказывают правильность выполненной работы и создают предпосылки для перехода к созданию системы управления реальным асинхронным моментным ЭП с микроконтроллерным управлением.

В дальнейшем планируется использование данной системы автоматического управления процессом испытания электропривода лифтов для организации и проведения испытаний серийно выпускаемых ЭП лифтов. Проведение испытаний в автоматизированном режиме позволит существенно сэкономить время, необходимое для проверки ЭП лифтов при одновременном улучшении качества настройки, что в итоге улучшает режимы работы ЭП и повышает безопасность эксплуатации лифтов.

Список литературы

1. Антропов А.А., Гарганеев А.Г., Каракулов А.С., Ланграф С.В., Нечаев М.А. Опыт разработки преобразователя частоты для асинхронного электропривода общепромышленного применения//Электротехника. № 9. 2005. С.23-26

2. Башарин А.В., Новиков В.А., Соколовский Г.Г. Управление электроприводами: Учебное пособие для вузов. - Л.: Энергоиздат. Ленингр. отд-ние, 1982. - 392 с.

3. Белов М.П. Автоматизированный электропривод типовых производственных механизмов и технологических комплексов: Учебник для вузов - М.: Академия, 2004. - 576 с.

4. Бесекерский В.А., Попов Е.В. Теория систем автоматического управления. Изд. 4-е, перераб. и доп. - СПб, Изд-во «Профессия», 2004. - 752с.

5. Гарганеев А.Г., Ланграф С.В. Стенд для нагрузочных испытаний электроприводов. Материалы III-ей Всероссийская научно-практической конференции «Автоматизированный электропривод и силовая электроника» (АЭПЭ-2006), Новокузнецк 2006.

6. Ключев В.И. Теория электропривода: Учеб. для вузов. - 2-е изд.перераб.и доп. - М.: Энергоатомиздат, 2001. - 704 с.

7. Ковач К.П., Рац И. Переходные процессы в машинах переменного тока/ Пер. с нем. М. Л.: Госэнергоиздат, 1963. 735 с.

8. Копылов И.П. Математическое моделирование электрических машин. - М.: Высшая школа, 2001. - 274 с.

9. Ланграф С.В. Косвенное определение момента в асинхронном электроприводе. Труды X-ой Международной научно-практической конференции студентов, аспирантов и молодых учёных «Современные техника и технологии», ТПУ, Томск 2004г.

10. Ланграф С.В. Оптимизация систем векторного управления асинхронных электроприводов. Материалы XII-ой Международной научно-практической конференции студентов и молодых ученых «Современные техника и технологии» (СТТ-2006), Изд-во ТПУ, 2006, С. 68-70..

11. Удут Л.С., Мальцева О.П., Кояин Н.В. Проектирование и исследование автоматизированных электроприводов. Часть 1. - Введение в технику регулирования линейных систем. Часть 2. - Оптимизация контура регулирования: Учебное пособие. - Томск: Изд. ТПУ, 2000. -144.

12. Удут Л.С., Мальцева О.П., Кояин Н.В. Проектирование и исследование автоматизированных электроприводов. Часть 6. - Механическая система электропривода постоянного тока: Учебное пособие. - Томск: Изд. ТПУ, 2004. -144с.

13. Чернышев А.Ю., Ланграф С.В., Чернышев И.А. Исследование систем скалярного частотного управления асинхронным двигателем: методические указания к выполнению лабораторных и практических работ по курсу "Электропривод переменного тока" для студентов специальности 180400. Томский политехнический университет. -- Томск : Изд-во ТПУ, 2002. - 23 с.

14. Энергосберегающий асинхронный электропривод: Учеб. пособие для студ.высш. учеб. заведений / И.Я. Браславский, З.Ш. Ишматов, В.Н. Поляков; под ред. И.Я. Браславского.- М.: Издательский центр «Академия», 2004. - 256с.

15. Langraf S.V., Obraztsov K.V. Optimization of vector control system induction motor drives. Modern techniques and technologies. MTT-2006. Proceedings of the 12-th International Scientific and Practical Conference of Students, Postgraduates and Young Scientists, 27-31 March, 2006 Tomsk, Russia. TPU, - P. 68-70.

Страницы: 1, 2, 3


ИНТЕРЕСНОЕ



© 2009 Все права защищены.