реферат бесплатно, курсовые работы
 

Автогрейдер ДЗ-122 с дополнительным оборудованием для скалывания льда

Автогрейдер ДЗ-122 с дополнительным оборудованием для скалывания льда

Федеральное агентство по образованию

Пермский государственный технический университет

Курсовой проект

по дисциплине МЗР:

"Автогрейдер ДЗ-122 с дополнительным оборудованием для скалывания льда"

Пермь 2009

Содержание

Введение

Патентный поиск

1. Определение основных параметров автогрейдера

2. Тяговый расчёт автогрейдера

3. Расчёт на прочность оборудования автогрейдера

3.1 Расчёт основной рамы

3.2 Расчёт тяговой рамы

3.3 Расчёт отвала

4. Расчёт механизмов управления рабочим оборудованием автогрейдера

4.1 Механизм подъёма отвала

4.2 Механизм поворота отвала

4.3 Механизм изменения угла резания отвала

4.4 Механизм выдвижения отвала

4.5 Механизм выноса тяговой рамы в сторону

5. Расчёт автогрейдера на устойчивость

5.1 Расчёт продольной устойчивости

5.2 Расчёт поперечной устойчивости

6. Расчёт производительности автогрейдера

7. Гидравлическая система автогрейдера

8. Техника безопасности

Список литературы

Введение

Автогрейдеры представляют собой самоходные планировочно- профилировочные машины, основным рабочим органом которых является полноповоротный грейдерный отвал с ножами, установленными под углом к продольной оси автогрейдера. Отвал размещён между передним и задним мостами пневмоколёсного ходового оборудования. При движении автогрейдера ножи срезают грунт и отвал сдвигает его в сторону.

Автогрейдеры применяют для планировки и профилирования дорог, сооружения высоких насыпей и профильных выемок, отрывки дорожного корыта и распределения в нём каменного материала, зачистки дна каналов, планировки территорий, засыпки траншей, рвов, канав и ям, а также очистки дорог, строительных площадок, городских магистралей и площадей от снега в зимнее время. Автогрейдеры используются на грунтах I …III категорий. При работе автогрейдер совершает ряд последовательных проходов: резание грунта, его перемещение, разравнивание и планировка поверхности сооружения. Современные автогрейдеры конструктивно подобны и выполнены в виде самоходных трёхосных машин с полноповоротным грейдерным отвалом, с механической или гидромеханической трансмиссией и гидравлической системой управления рабочими органами.

Автогрейдеры могут быть использованы для киркования грунта и изношенного полотна автомобильных дорог, а также для перемешивания грунтов с добавками и вяжущими материалами на полотне дороги. Все рабочие операции автогрейдеры осуществляют при продольных проходах машин с помощью основного рабочего оборудования - отвала с различными приспособлениями (уширителем, удлинителем, откосником, кюветоочистителем) и навесного оборудования (бульдозерного отвала, кирковщика, снегоочистителя, смесителя и пр.)

Автогрейдер состоит из следующих основных частей: длинной и выгнутой в средней части основной рамы, служащей для установки на ней всех механизмов автогрейдера и опирающейся сзади на заднюю тележку, снабжённую балансирами с ведущими колёсами, а спереди на переднюю ось с управляемыми колёсами; двигателя, закреплённого сверху рамы над задней тележкой; трансмиссии, передающей вращение от двигателя к ведущим колёсам, гидронасосам и пр.; отвала, расположенного в пространстве под выгнутой узкой в плане частью рамы, называемой хребтовой балкой, на специальной тяговой раме, закреплённого с помощью сферического шарнира на концевой части хребтовой балки над передней осью и двух гидроцилиндров подъёма отвала, установленных на кронштейнах с двух сторон хребтовой балки в её самой приподнятой части; кабины с органами и пультом управления и сиденьем машиниста; дополнительного оборудования (отвала бульдозера, кирковщика и др.) с гидроцилиндра для их привода; капота с откидными стенками, закрывающего двигатель, и электоросистемы сигнализации и освещения.

Над тележкой удачно скомпонованы двигатель с системами его запуска и радиатором охлаждения, закрытыми капотом; элементы трансмиссии и кабина со всем оборудованием. При такой компоновке создаётся полезная нагрузка на ведущие колёса и , кроме того, из кабины машиниста открывается достаточно хороший обзор по ходу машины и на всё зону расположения отвала, что позволяет машинисту автогрейдера непосредственно наблюдать за самим процессом обработки грунта на дороге при любых положениях отвала в пространстве. Расположение ведущих колес задней тележки непосредственно под двигателем и под кабиной машиниста с расположенными внутри органами управления, позволяет также удачно скомпоновать трансмиссию, сделать несложной систему управления ею.

С целью повышения поперечной устойчивости на наклонных поверхностях на автогрейдерах предусмотрен наклон передних колёс, осуществляемый с помощью специально механизма. Благодаря наклону передние колёса всегда занимают вертикальное положение на уклонах, и поэтому машина более устойчива против поперечного опрокидывания.

На автогрейдере применена гидромеханическая трансмиссия, в которой вместо муфты сцепления установлен гидротрансформатор, позволяющий автоматически в широких пределах менять крутящий момент на колёсах и их скорость в зависимости от возникающего на колёсах сопротивления. Это упрощает механическую часть трансмиссии, улучшает условия труда машиниста, тяговые свойства автогрейдера и его проходимость, снижает динамические нагрузки в трансмиссии. Применение гидротрансформатора повышает производительность автогрейдера, особенно при тяжёлых режимах работы, хотя несколько удорожает конструкцию автогрейдера.

Патентный поиск

Анализируя изобретения, решаю остановиться на рабочем органе для очистки покрытий от льда и уплотненного снега, установленном на раме автогрейдера спереди, в место дополнительного отвала.

Рабочий орган для очистки покрытий от льда и уплотненного снега, содержащий раму с закрепленным на ней валом, на котором установлены зубчатые диски с центральным отверстием большего диаметра, чем диаметр вала, отличающийся тем, что, с целью повышения качества очистки, он снабжен подпружиненным и регулируемым в радиальном направлении упором, смонтированным в центральном отверстии каждого диска для взаимодействия с кулачком, расположенном на приводном валу.

1. Определение основных параметров автогрейдера

Берем за основу автогрейдер ДЗ-122.

Техническая характеристика автогрейдера ДЗ-122:

Тип автогрейдера………….средний

Мощность двигателя, кВт……………………………….99

Размеры отвала, м:

длина...............................................................3,72

высота.....................................................0,62

Угол наклона отвала, град......................................40...90 (50)

Угол резания, град..............................................30...70 (40)

Угол поворота отвала, град.............................................360°

Вынос отвала в сторону, м............................................0,81

Высота подъема отвала, м...................................0,4

Колесная формула..............................................1x2x3

Давление в гидроприводе, МПа...............................10

Колея колес, м:

передних.....................................................2,0

задних....................................2,0

База, м...........................................................................5,83

Радиус поворота, м.......................................14

Тип трансмиссии............................гидромеханическая

Дорожный просвет, м...............................................0,4

Скорости передвижения, км/ч:

вперед...............................................7,4…43

назад.................................................7,7;25,2

Габаритные размеры, мм:

длина.................................................................9450

ширина.............................................................2500

высота............................................................................3500

Эксплуатационная масса, т……………………………14,7

К основным параметрам и размерам автогрейдера (грейдера) относятся: масса, длина Lотв и высота Н отвала, боковой вынос отвала l, дорожный просвет С и заглубление отвала h, угол резания ножа б, углы захвата ц и наклона х отвала, колесная база Lб, колея передних и задних колес ВП и ВЗ, колесная формула АхВхД. Определим оптимальную силу тяжести автогрейдера можно по заданным площади поперечного сечения S кювета автодороги и необходимому для создания земляного полотна числу проходов:

где т - коэффициент, учитывающий неравномерность сечений стружки при последовательных проходах, принимают т=1,35;

S - площадь сечения треугольного кювета, S = 2,25 hК2 =2,25*0,62 =0,81 м2 (здесь hк - глубина кювета, hк= 0,6 м);

k - удельное сопротивление грунта резанию, k=130 кПа;

ш - коэффициент, учитывающий колесную формулу автогрейдера, ш=0,75, при формуле 1x2x3;

цсц - коэффициент сцепления при буксовании колес 18 ... 22 %, цсц=0,45;

п - число проходов при устройстве земляного полотна в нулевых отметках, для грунтов II категории п = 4.

Сила тяжести автогрейдера (в кН), приходящаяся на его задний мост,

G2 = (0,7 ...0,75)*G =0,7*105,3 =73,7 кН,

где G - вес автогрейдера, G = 105,3 кН.

Сила тяжести автогрейдера (в кН), приходящаяся на его передний мост,

G1 = G-G2=105,3-73,7 = 31,6 кН.

Сцепной вес автогрейдера (вес, приходящийся на ведущие колеса, кН):

Gсц= ш1G = 0,75*105,3 =79 кН,

где ш1 - коэффициент, определяемый колесной схемой автогрейдера, для схемы 1x2x3, ш1=0,7 ... 0,75.

Необходимая при рабочем режиме мощность двигателя

Nр.р.=(Nпол+ Nдв + Nбукс)/k1з= (52,7 + 10,5 + 10,5) / 1*0,76 =97 кВт,

где Nпол - полезная мощность, кВт:

(Vф - фактическая скорость

перемещения машины, Vф=4 км/ч; цсц - коэффициент сцепления, цсц = 0,6);

Nдв - мощность, затрачиваемая на перекатывание:

(f - коэффициент сопротивления качению, f= 0,09);

Nбукс - мощность, затрачиваемая на пробуксовку:

(-коэффициент буксования, 0,18);

k1 - коэффициент, учитывающий уменьшение мощности двигателя в условиях неустановившейся нагрузки, для гидромеханической трансмиссии k1=1;

з - КПД трансмиссии, для гидродинамической трансмиссии з=0,76. Мощность двигателя, определяемая для транспортного режима:

где f - коэффициент сопротивления качению, для случая движения автогрейдера по твердому пути f = 0,04;

- максимальная скорость движения автогрейдера, принимают равной 40 км/ч.

Из найденных двух значений мощности выбираем максимальную и далее используем ее в расчетах. Найденная максимальная мощность совпадает с номинальной мощностью рассчитываемого автогрейдера.

Длину отвала рассчитывают по формуле

Lотв =(0,7 ... 0,76) + 1,2 = 0,76+ 1,2=3,7 м,

где та - масса автогрейдера, та = G/g = 105,3 / 9,81 = 10,7 т.

Высота отвала

Hотв= 0,2 Lотв- 0,12 = 0,2*3,7-0,12 = 0,62 м.

Радиус кривизны отвала

К =Hотв/ (соsш + соsш) = 0,62 / (соs65° + соs50°) = 0,58 м.

В поперечном сечении профиль отвала обычно очерчивается по дуге окружности (рис. 1). При таком профиле стружка вырезаемого грунта, перемещаясь по отвалу вверх, поворачивается на нем в направлении его движения и, дойдя до верхней кромки отвала, рассыпается или опрокидывается перед ним, образуя призму грунта. Чтобы исключить пересыпание грунта за отвал, угол опрокидывания ш принимают равным 65 ... 70°. При установке углов должно быть обеспечено равенство

б + щ + ш= р,

т.е. щ = р-б-ш =180°-50°-65°= 65°.

Рис 1. Поперечный профиль отвала

База автогрейдера выбирается из условия возможности разворота отвала (рис. 2):

L = L1 + 0,5D + 0,5Д' = 4,45 + 0,5*1,2 + 0,5*0,6 = 5,35 м,

где L - база трехосного автогрейдера;

Рис.2. Ходовое устройство автогрейдера

Размеры b и Lотв и cвязанного с ними радиуса поворота R автогрейдера (см.рис.2) выбирают такими, чтобы машина имела наименьшие размеры. Однако назначение наименьших величин этих параметров обусловливается следующим. Устойчивость движения автогрейдера при вырезании стружки с наибольшей шириной захвата обеспечивается, если колеса автогрейдера идут по краям забоя. Размеры b и Lотв берут из технической характеристики рассчитываемого автогрейдера.

Все данные определяют по чертежу или берут из технической характеристики стандартного автогрейдера.

2. Тяговый расчет автогрейдера

В процессе работы автогрейдера возникают различного характера и разной величины силы сопротивления его движению.

Для определения сопротивлений, возникающих в рабочем режиме при резании и перемещении грунта автогрейдером определенного типа, должны быть известны род грунта и его характеристики, размеры отвала и углы его установки, вес автогрейдера.

Тяговый расчёт автогрейдера позволяет оценить возможности тягача при транспортировании грунта с подрезанием стружки. Для нормального протекания процессов резания, перемещения грунта или планирования поверхностей необходимыми являются условия УW?Тн и УW?Tц, где Тн - номинальное значение силы тяги автогрейдера на используемой передаче:

где - КПД трансмиссии;

V- скорость движения, V= 4 км/ч = 1,1 м/с.

Предельное значение тягового усилия по сцеплению с грунтом:

где - сцепной , =ш1 =105,3*0,75=79 кН,

цсц - коэффициент сцепления колес с грунтом, цсц = 0,6.

Суммарное сопротивление копанию автогрейдером (в кН)

УW =W1 + W2 + W3 + W4 + W5 + W6 + W7,

1) Сопротивление грунта резанию,

W1 = К Fст = 15*0,6=9 кН,

здесь K - удельное сопротивление грунта резанию, К = 15 кПа;

Fст - площадь поперечного сечения вырезаемой стружки грунта при резании полной длиной отвала, Fст = Lотвh=3,72*0,16=0,6 м2 (длина отвала Lотв=3,72 м; наибольшая глубина резания (толщина стружки) h= 0,25Hотв=0,25*0,62=0,16 м; высота отвала Hотв=0,62 м).

2) Сопротивление перемещению призмы грунта

W2 = м2 Gпр sinц/Kp= 0,5*11*sin65° /1,2 = 4,3 кН,

где м2 - коэффициент внутреннего трения грунта, м2= 0,5;

Gпр - вес призмы грунта перед отвалом, Gпр =ггрgVпр=1800*9,81*0,62= =10948 Н ? 11 кН;

здесь ггр - плотность грунта, ггр = 1800 кг/м3;

g - ускорение свободного падения, g = 9,81 м/с2;

Vпр - объем призмы перед отвалом с учетом, что часть длины ножа погружена в грунт для резания,

где Кр - коэффициент разрыхления грунта, Кр=1,2;

h - толщина стружки, h = 0,16 м;

д - угол естественного откоса грунта, д= 40°.

3) Сопротивление перемещению стружки грунта вверх по отвалу

W3 = м1 Gпр cos2ц*sinц = 0,9*3,4*соs250°*sin65° = 1,2 кН,

где м1 - коэффициент трения грунта по отвалу, м1=0,9;

б - угол резания ножа, б=50°.

4) Сопротивление перемещению стружки грунта вдоль по отвалу

W4 =м1 м2 Gпр cosц = 0,9*0,5*3,4 соs 65° = 0,5 кН.

5) Сопротивление перекатыванию колес

W5 =G cosв [(1-a)f+a м1] = 105,3 соs 0° [(1 - 0,25) 0,05 + 0,25*0,9] = 27,6 кН,

где в - угол подъема участка работы в направлении движения, в= 0°;

f - коэффициент сопротивления качению на колесах, для пневмоколесного хода f=0,05;

а - коэффициент, учитывающий часть силы тяжести, воспринимаемой отвалом, а= 0,25.

6) Сопротивление от преодоления подъема

W6 =G sini = 105,3*sin0о = 0,

где G - вес автогрейдера, G=105,3 кН;

i - уклон местности, принимают равным 0°.

Сопротивление от сил инерции W7 считают равными 0, так как принимают, что движение автогрейдера происходит без ускорения и без переключения скоростей, т.е. при установленном движении. Тогда полное сопротивление:

УW =W1 + W2 + W3 + W4 + W5 + W6 + W7=

= 9 + 4,3 + 1,2 + 0,5 + 27,6 + 0 + 0 = 42,6 кН.

Проверим, соблюдаются ли условия УW = 42,6 кН < Тн = 61,6 кН и УW= 42,6 кН < Тц= 47,4 кН. Условия соблюдаются, значит автогрейдер подходит.

3. Расчет на прочность оборудования автогрейдера

3.1 Расчет основной рамы

Первое расчетное положение. В первом расчетном положении, соответствующем нагрузкам, возникающим в процессе нормальной эксплуатации автогрейдера, наиболее неблагоприятные условия возникают в конце зарезания, когда отвал режет грунт одним концом, опущенным настолько, что передний мост вывешен и упирается в край кювета, задние колеса буксуют на месте, работа производится на поперечном уклоне с углом л=16°. В этих условиях основная рама оказывается максимально нагруженной нормальными нагрузками (рис. 3). В центре тяжести авто грейдера сосредотачивается сила его веса G и равнодействующая сил инерции Ри, которая раскладывается на две составляющие, так как автогрейдер работает на уклоне. Первая, равная G соsл, действует перпендикулярно опорной поверхности, а вторая, G sinл, - параллельно ей. Координаты Н (м) и l (м) центра тяжести современных автогрейдеров приблизительно определяют из соотношений:

H = rс+ 0,5 = 0,56 + 0,5 = 1,06 м, l = 0,3*L = 0,3*5,83 = 1,75 м,

где rс - статический радиус колеса, rс= 0,93*rк= 0,93*0,6 = 0,56 м (здесь rк -радиус колеса, rк =0,6 м); L - колесная база, L = 5,83 м.

Рис. 3. Схема сил, действующих на автогрейдер в первом расчетном положении

Размеры L = 5,83 м, L1 = 4,8 м, l = 1,45 м, п = 2,32 м, т =1,3 м, а= 0,05 м, А = 1,1 м, q= 0,46 м, с = 0,9 м, h = 0,25 м, rк = 0,6 м, b = 2,0 м снимают с чертежа. В центре тяжести автогрейдера помимо его веса сосредотачивается равнодействующая инерционных сил

PИ= (КД- 1) иmах G2= (1,5 - 1) 0,85*73,7 = 31,3 кН,

где КД - коэффициент динамичности, для первого расчетного положения, Кд=1,5;

иmах - максимальный коэффициент использования сцепного веса машины, иmах = 0,85;

G2 - сила тяжести автогрейдера, приходящаяся на его задний мост, G2=73,7 кН.

В точке О, которой обозначен конец режущей кромки ножа отвала, сосредотачиваются усилия Рх, Ру и Рz, возникающие в результате сопротивления грунта резанию. В точках О'2 и О"2, соответствующих проекциям середин балансиров на опорную поверхность, действуют вертикальные реакции задних правых и левых колес Z2п и Z2л, свободные силы тяги Х2п и Х2л и боковые реакции Y2п и Y2л.

Боковые реакции

Y2п = Y2л = 0,5 G sinл = 0,5*105,3*sin 16° = 14,5 кН.

В точке О3, в которой передний мост касается кювета, возникает боковая реакция Y1. Составим систему уравнений равновесия:

УX = 0: Х2п + Х2л + Ри - Px = 0; (1)

УY = 0: Y2п + Y2л -G sinл - Py+Y1= 0; (2)

УZ = 0: Z2п + Z2л -G cosл+ Pz = 0; (3)

УMx = 0: G*cosл - Z2п * b-G sinл H = 0; (4)

УMy = 0: Pz L1- G*cosл - Ри H = 0; (5)

УMz = 0: (Y2п + Y2л) L1 +X2л * + Ри + G sinл (L1-l) - Y1(L- L1)= 0; (6)

Определим неизвестные силы и реакции Рх, Р2, P2п, P2л из уравнений равновесия, используя систему уравнений:

;

;

Z2п =G cosл -Z2л -Pz =105,3*cos16 - 35,2 - 43,8 = 22,2 кН;

Рх = иmах (Z2п + Z2л)+ Pz = 0,85 (22,2 + 35,2)+43,8 = 92,6 кН.

Силы тяги правого и левого задних колес могут быть выражены через вертикальные реакции

Х2п = Z2п иmах = 22,2*0,85 = 18,9 кН; Х2л = Z2л* иmах = 35,2*0,85 = 29,9 кН.

Зная Х2п и Х2л, определим

=137,6 кН;

Далее необходимо найти усилия, действующие в т. О4 - шаровом шарнире тяговой рамы, служащем опорой для правой части основной рамы. Левой частью основная рама двумя точками, соответствующими точкам О'2 и О''2, опирается на задний мост, а средней частью - на систему подвески тяговой рамы.

Страницы: 1, 2


ИНТЕРЕСНОЕ



© 2009 Все права защищены.