реферат бесплатно, курсовые работы
 

Анализ технологической операции изготовления гильзы цилиндра

где Фд-действительный годовой фонд времени и при двух сменах работы оборудования и рабочих мест равен Фд=4029 ч.

Определяем партию запуска ([1], с.23):

(3.2)

где z-количество повторений запуска деталей в год.

При мелкосерийном производстве изделия изготавливают партиями или мелкими сериями, состоящими из одноименных, однотипных по конструкции и одинаковых по размерам изделий, запускаемых в производство одновременно. Основным принципом этого вида производства является изготовление всей партии (серии) цельно как в обработке, так и в сборке.

Определение количества деталей в партии ([1], с.23):

, (3.3)

где F - число рабочих дней в году;

N - число деталей (программа);

а - периодичность запуска (а = 3,6,12,24 дней).

Краткая характеристика выбранного типа производства [2].

Мелкосерийный тип производства характеризуется ограниченной номенклатурой изделий, изготовляемых периодически повторяющимися партиями и сравнительно большим объемом выпуска. Коэффициент закрепления операций 20-40.

Используется универсальное и специализированное и частично специальное оборудование. Широко применяются станки с ЧПУ, обрабатывающие центры, а также гибкие автоматизированные системы на основе станков с ЧПУ, связанных транспортирующими устройствами, управляемыми от ЭВМ. Оборудование расставляется по технологическим группам с учетом направления основных грузопотоков цеха, по предметно-замкнутым участкам.

Технологическая оснастка в основном универсальная, Большое распространение имеет универсально-сборная, переналаживаемая технологическая оснастка, позволяющая значительно повысить коэффициент оснащенности мелкосерийного производства.

В качестве исходных заготовок используется горячий и холодный прокат, литье в землю и под давлением, точное литье, поковки и точные штамповки.

Требуемая точность достигается как методами автоматического получения размеров, так и методами пробных проходов с частичным применением разметки для сложных корпусных деталей.

Квалификация рабочих выше чем в массовом производстве, но ниже чем в единичном. Наряду с рабочими универсальщиками и наладчиками, работающими на сложном универсальном оборудовании используются рабочие-операторы, работающие на настроенных станках.

В зависимости от особенности технологии производства и объема выпуска обеспечивается полная, неполная, групповая взаимозаменяемость, однако применяется и пригонка по месту, компенсация размеров.

Технологическая документация и нормирование подробно разрабатывается для наиболее сложных и ответственных заготовок и упрощенного нормирования для простых заготовок.

Применяемый режущий инструмент - универсальный и специальный.

Измерительный инструмент - калибры, специальный измерительный инструмент.

В соответствии с данным типом производства и порядком выполнения операций, расположения технологического оборудования устанавливается групповая форма организации технологического процесса, характеризуемая однородными конструктивно-технологическими признаками изделий, единством средств технологического оснащения.

В мелкосерийном производстве технологический процесс преимущественно дифференцирован, т.е. расчленен на отдельные операции, которые закреплены за отдельными определенными станками. Станки применяются универсальные, специализированные, специальные, автоматизированные, агрегаты.

Станочный парк должен быть специализирован в такой мере, чтобы был возможен переход от производства одной серии машин к производству другой, несколько отличающейся от первой в конструктивном отношении. Должны применяться специализированные и специальные приспособления, специализированный и специальный режущий инструмент и измерительный инструмент в виде предельных калибров и шаблонов, обеспечивающих взаимозаменяемость обработанных деталей. В качестве специализированных приспособлений (или инструментов) могут использоваться нормализованные конструкции, приспособленные для данной операции.

Мелкосерийное производство значительно экономичнее, чем единичное производство, так как лучшее использование оборудования, специализация рабочих, увеличение производительности труда обеспечивают уменьшение себестоимости продукции.

Мелкосерийное производство является наиболее распространенным видом производства в общем и среднем машиностроении. К этому виду производства относятся:

станкостроение;

насосостроение;

производство прессов;

производство компрессоров;

производство вентиляторов;

производство текстильных машин;

производство оборудования для пищевой промышленности;

производство оборудования для лесной промышленности;

производство оборудования для коммунального хозяйства;

транспорта и т.д.

Как видно данная отрасль присутствует в перечне и выбор типа производства данной детали (изделия) вполне обуславливается и применим

4. Выбор способа получения заготовки и разработка технических требований к ней

Метод получения заготовки оказывает существенное влияние на технико-экономические показатели технологического процесса изготовления детали. Правильный его выбор позволяет снизить трудоемкость механической обработки, повысить коэффициент использования материала, снизиь материалоемкость конструкции.

На выбор метода получения заготовки влияют материал детали, его назначения и технические требования к изготовлению, объем выпуска, конфигурация, форма поверхностей и размеры.

Требования, предъявляемые к заготовкам, обрабатываемых на металлорежущих станках:

С целью снижения себестоимости детали заготовка должна быть по форме и размерам максимально приближенной к детали.

Черновые поверхности используемые на первой механической операции в качестве технологической базы должны быть чистыми и ровными, без штрихов, литейных уклонов.

Вид заготовки устанавливаем в результате анализа чертежа детали, ее материала и технических требований к изготовлению, габаритов и массы, объема выпуска, на основе технико-экономического сравнения нескольких вариантов.

Данные о химическом составе о материале - Сталь 38ХА ГОСТ 4345 - 71 приведены в таблице 4.1

Таблица 4.1. - Химический состав Стали 38ХА

C,%

P,%

S,%

Mn,%

Si,%

Cr,%

Ni,%

Cu,%

0.35-0.42

0.025

0.025

0.50-0.80

0.17-0.37

0.80-1.10

0.30

0.30

Метод выполнения заготовок для деталей машин определяется:

назначением детали;

конструкцией детали;

техническими требованиями;

масштабом и серийностью выпуска;

экономичностью.

Выбрать заготовку - значит установить способ ее получения, наметить припуски на обработку каждой поверхности, рассчитать размеры и указать допуски на неточность изготовления.

Для рационального выбора заготовки необходимо одновременно учитывать все вышеперечисленные исходные данные, так как между ними существует тесная взаимосвязь.

В базовом варианте заготовку получали из проката.

Заготовку для данной детали можно получить различными способами:

ковкой на молотах или прессах;

горячей штамповкой.

В качестве двух вариантов способа получения заготовки принимаются:

1 вариант - ковка на молотах;

2 вариант - штамповка на молотах в закрытых штампах.

Стоимость заготовок определяется по формуле:

(4.1)

где Ci - базовая стоимость одной тонны заготовок, грн;

Кт - коэффициент, зависящий от класса точности заготовки;

Кс - коэффициент, зависящий от группы сложности заготовки;

Кв - коэффициент, зависящий от массы заготовки;

Км - коэффициент, зависящий от марки материала;

Кп - коэффициент, зависящий от объема производства;

Q - масса заготовки;

q - масса детали;

Sотх - стоимость одной тонны отходов, грн.

Для заготовки, полученной ковкой:

Ci = 300 грн/т,

Кт = 1 (с.37, [5]);

Кс = 1 (табл.2.12, с.38, [5]);

Кв = 0.75 (табл.2.12, с.38 [5]);

Км = 1.79 (с.37, [5]);

Кп = 1 (табл.2.13, с.38 [5]);

Q = 29 кг,

q = 15 кг,

Sотх=25 грн/т.

Стоимость заготовки, полученной ковкой на молотах:

Для заготовки, полученной штамповкой:

Сi=380 грн/т,

Кт=1.1. (с.37, [5]);

Кс=1 (табл.2.12, с.38, [5]);

Кв=0.75 (табл.2.12, с.38, [5]);

Км=1.79 (с.37, [5]);

Кп=1 (табл.2.13, с.38, [5]);

Q=55 кг.

Стоимость заготовки, полученной штамповкой:

Так как стоимость заготовки, полученной штамповкой, меньше стоимости заготовки, полученной ковкой, то в качестве способа получения заготовки для данной детали принимаем штамповку.

Чертеж исходной заготовки отличается от чертежа готовой детали прежде всего тем, что на всех обрабатываемых поверхностях предусматриваются припуски, соответственно изменяющие размеры, а иногда и форму заготовок. Форма отдельных поверхностей исходных заготовок определяется с учетом технологии получения заготовок, требующей в ряде случаев определенных уклонов, радиусов закругления и т.п.

Установление правильных размеров припусков на обработку является ответственной технико-экономической задачей. Назначение чрезмерно больших припусков приводит к непроизводительным потерям материала, превращаемого в стружку; к увеличению трудоемкости механической обработки; к повышению расхода режущего инструмента и электрической энергии; к увеличению потребности в оборудовании и рабочей силе. При этом затрудняется построение операций на настроенных станках, снижается точность обработки в связи с увеличением упругих отжатий в технологической системе и усложняется применение приспособлений.

Назначение недостаточно больших припусков не обеспечивает удаления дефектных слоев материала и достижения требуемой точности и шероховатости обрабатываемых поверхностей, а также вызывает повышение требований к точности исходных заготовок на станках при обработке по методу пробных ходов и увеличивает опасность появления брака.

Для окончательно выбранной заготовки, в соответствии со стандартом ГОСТ 7505 - 89 «Поковки стальные штампованные» назначаем припуски на все поверхности и определяем размеры заготовки.

Расчет будем производить по ГОСТ 7505 - 89, [8].

Исходные данные для расчета:

1) Масса поковки (расчетная) - 21 кг,

расчетный коэффициент Кр = 1,4 (прил.3, [8]).

2) Класс точности - Т4 (прил.1, [8]).

3) Группа стали - М2 - сталь с массовой долей углерода свыше 0,35 до 0,65% или суммарной массовой долей легирующих элементов свыше 2,0 до 5,0% (табл.1, [8]).

4) Степень сложности - С2 (прил.1, [8])

Параметры описывающей поковку фигуры:

диаметр - 155 мм ((122+25) 1,05);

длина - 348 мм (3311,05), где 1,05 - коэффициент;

масса (расчетная) - 51 кг

5) Конфигурация поверхности разъема штампа - П (плоская) (табл.1, [8]).

6) Исходный индекс - 13 (табл.2, [8]).

Основные припуски, размеры поковки и их допускаемые отклонения приведены в таблице 4.2.

Окончательный размер элемента заготовки, мм

+1,8

152,5

- 1,0

+1,8

127,5

- 1,0

+1,6

74

- 0,9

+2,4

336,5

- 1,2

+1,8

117,5

- 1,0

Допускаемые отклонения размеров заготовки, мм

+1,8

-1,0

+1,8

-1,0

+1,6

-0,9

+2,4

-1,2

+1,8

-1,0

Дополнительный припуск, мм

0,2

0,2

0,2

0,25

0,25

Основной припуск на размер, мм

2,7

2,7

1,8

2,5

2,0

Номинальный размер элемента детали, мм

147

122

70

331

115

5. Анализ технологической операции существующего или типового технологического процесса

Анализ будем производить на основании базового технологического процесса. В данном технологическом процессе последовательность механической обработки соответствует общепринятым этапам построения технологического процесса.

На первой технологической операции производится обработка поверхностей, которые на последующих операциях будут приняты за базовые.

Данный раздел курсовой работы включает в себя следующие работы:

- обоснование правильности схемы базирования и закрепления заготовки на одну операцию технологического процесса, придерживание принципов объединения и постоянства баз;

- обоснование правильности выбора металлорежущего станка, оборудования, режущего и измерительного инструментов для этой операции;

- расчет режимов резания для одного технологического перехода аналитическим методом, а для других переходов этой операции - табличным методом;

- расчет нормы времени Тшт(или Тшт - к) для одной технологической операции.

Заводской технологический процесс приведен в таблице 5.1

Таблица 5.1 - Заводской технологический процесс

Номер

операции

Наименование операции

Оборудование

005

Кузнечная

010

Термическая

015

Токарная

Токарно-винторезный мод.1М63

020

Маркировочная

025

Контроль ОТК

030

Координатно-расточная

Координатно-расточной мод.2Д450

035

Токарная

Токарно-винторезный мод.1К625

040

Токарная

Токарно-винторезный мод.1К625

045

Токарная

Токарно-винторезный мод.1К625

050

Маркировочная

055

Контроль ОТК

060

Термическая

Установка закалки ТВЧ

065

Шлифовальная

Круглошлифовальный мод.3У12

070

Токарная

Токарно-винторезный мод.1К625

075

Шлифовальная

Круглошлифовальный мод.3У12

080

Маркировочная (на бирке)

085

Контроль ОТК

090

Шлицефрезерная

Шлицефрезерный мод.5350

095

Шлифовальная

Круглошлифовальный мод.3У12

100

Токарная

Токарно-винторезный мод.1М63БФ101

105

Фрезерная

Вертикально-фрезерный мод.6Р13

110

Маркировочная

115

Контроль ОТК

120

Слесарная

Технологический процесс изготовления детали “вал эксцентриковый” в заводском варианте выполнен как маршрутный, что соответствует мелкосерийному типу производства. Он содержит 24 операции, из которых 11 операций механической обработки, остальные - контрольные, слесарные, термические, сварочные, маркировочные.

Сравнивая заводской техпроцесс с типовым мы можем сказать, что операции обработки выбраны в основном правильно. Но есть мелкие недостатки, которые возможно вызваны дополнительными требованиями конструктора.

Недостатки заводского ТП:

а) Главный недостаток - несоблюдение принципа поэтапности операции;

б) на токарных операциях совмещаются черновое и чистовое точение, что соответствует различным этапам обработки и т.д.

Применяемое оборудование, режущий инструмент, средства технологической оснастки не соответствует современному уровню развития ТМС (более целесообразно применение станков ЧПУ, универсально-сборочных приспособлений, инструмента с механическим креплением пластин и т.д.).

В заводском маршрутном ТП не указаны способы базирования и закрепления заготовки, выполняемые операционные размеры, подробно не расписан режущий и мерительный инструмент. Нормирование времени на выполнение операции приводится в часах и имеет место завышения норм времени в несколько раз.

5.1 Анализ и обоснование схем базирования и закрепления

Для дальнейшего рассмотрения выбираем операцию 045 - токарная обработка эксцентриков.

На этой операции будут окончательно обрабатываться следующие поверхности (рисунок 5.1): 7,8,9,10,11 и 12.

Рисунок 5.1 - Конструктивные элементы детали

Таким образом, на данной операции производится обработка шести поверхностей. Однако обработка в один установ невозможна, так как на этой операции про изводится точение двух эксцентриковых колен вала.

При выборе схем базирования и закрепления необходимо руководствоваться рекомендациями из [7, с.11].

При выборе схемы базирования необходимо придерживаться следующих соображений:

чистовые базы должны быть представлены точными, имеющими достаточную площадь поверхностями;

необходимо использовать принцип единства баз (совмещение технологической, конструкторской и измерительной баз);

необходимо использовать принцип постоянства баз;

обеспечивать возможность простого и быстрого закрепления заготовки;

обеспечивать свободный доступ инструмента в зону резания.

Базирование детали не представляет особых трудностей, так как она имеет достаточно развитые поверхности которые можно использовать в качестве базовых.

Рассмотрим возможные схемы базирования и закрепления при обработке заготовки на токарной операции 045 (черновое точение эксцентриковых колен вала).

Наиболее эффективные способы закрепления заготовки на операции - закрепление в четырехкулачковом патроне и поджатием задней бабкой.

, (5.1)

где - погрешность базирования (при упоре в торец = 0);

- погрешность закрепления заготовки в патроне.

Так для этой операции мы выбрали четырёхкулачковый патрон (не самоцентрирующийся), будет присутствовать погрешность закрепления. Четырёхкулачковый патрон выбран по причине обработки эксцентриковой части вала (смещенная ось).

В качестве опорной базы принимаем торец вала, наружная цилиндрическая поверхность будет двойной направляющей базой.

Точность обработки при таком закреплении заготовки будет зависеть от точности установки её в четырёхкулачковом патроне. Основная задача - правильно выставить кулачки патрона, что в свою очередь зависит от точности разметки (контрольные заточки) на предыдущей операции 040.

Для токарной обработки экцентриковых колен вала можно предложить ещё один вариант закрепления заготовки - закрепление в центрах (центра плавающий и вращающийся) с упором в торец (рисунок 5.3). . Припуск с цилиндрических поверхностей 1 и 15 (рисунок 5.1) снят ещё не был. Поэтому центра можно установить смещённо.

Рисунок 5.2 - Закрепление заготовки в патроне с поджатием задней бабкой.

Рисунок 5.3 - Закрепление заготовки в центрах с упором в торец.

Вторая схема закрепления не является технологичной, так как на данной операции будет сниматься большой неравномерный припуск. Для повышения жесткости такой технологической системе необходимо применить неподвижный люнет. Для такого закрепления будут назначаться низкие режимы резания, что значительно уменьшит производительность.

Проанализировав два разных способа закрепления можно утверждать, что более точный и надежный способ закрепления - это закрепление по первой схеме базирования - в четырёхкулачковом патроне с поджатием заготовки задней бабкой.

5.2. Обоснование выбора металлорежущего станка

Выбор металлорежущих станков выполняем исходя из следующих требований:

обращаем внимание на технологические методы обработки поверхностей;

мощность двигателя с учетом коэффициента полезного действия должна быть больше мощности резания;

габариты рабочего пространства должны позволять производить обработку как можно большего числа поверхностей за 1й установ;

тип оборудования должен соответствовать типу производства;

количество инструментов не должно превышать емкость инструментального магазина станка и др.

Исходя из вышеперечисленного, для токарной операции 045 выбираем станок токарно-винторезный с ЧПУ модели 1М63БФ101, основные технические характеристики которого приведены в таблице 3.2.

Таблица 5.2 - Технические характеристики токарно-винторезного

станка модели 1М63БФ101

Параметры

Значения параметров

Наибольший диаметр обрабатываемой заготовки, мм:

над станиной

- над суппортом

630

350

Наибольший диаметр прутка, проходящего через отверстие шпинделя, мм

65

Наибольшая длина обрабатываемой заготовки, мм

2800

Шаг нарезаемой резьбы:

метрической, мм

дюймовой, число ниток на дьюм

модульной, модуль

питчевой, питч

1 - 224

56 - 0,25

0,5 - 112

112 - 0,5

Частота вращения шпинделя, об/мин

10 - 1250

Число скоростей шпинделя

22

Наибольшее перемещение суппорта, мм:

продольное

поперечное

2520

400

Подача суппорта, мм/об:

продольная

поперечная

0,06 - 1,0

0,024 - 0,31

Число ступеней подач

32

Скорость быстрого перемещения суппорта, мм/мин:

продольного

поперечного

4500

1600

Мощность электродвигателя главного привода, кВт

15

Страницы: 1, 2, 3


ИНТЕРЕСНОЕ



© 2009 Все права защищены.