реферат бесплатно, курсовые работы
 

Аналіз можливих схем електрохімічних генераторів для автономних джерел електричної енергії

Звичайно до складу ЕХГ входять:

- система зберігання підготовки і підводу реагентів;

- система відводу продуктів реакції;

- система терморегулювання;

- система регулювання напруги.

При використанні ЕГ як автономного або резервного джерела енергії до його складу може входити система забезпечення режиму зберігання, що дозволяє зберігати електроди паливних елементів в неробочому стані під шаром інертних газів, наприклад, азоту.

Вибір реагентів визначається призначенням ЕХГ, його вартістю. терміном зберігання і відведення продуктів реакції, ступінню їх токсичності, а також такими об'єктивними показниками, як електродний потенціал, електрохімічна активність та електрохімічний еквівалент.

Електродний потенціал впливає на значення ЕРС паливного елементу. Аналіз електродних реакцій показує, що максимальної ЕРС можливо досягнути, якщо в якості пального використовувати літій, а окислювач - фтор. Однак в такому паливному елементі в якості електроліту можливо використовувати в основному розплавлені солі, що потребує підтримання високих температур і використання стійких до корозії металів.

По електрохімічній активності палива можливо розташувати в ряд:

Li, Na, Zn, Mg, Al, N2H4, H2, CH3OH, NH3, CO, CH4, C.

Тому як реакція взаємодії води з лужними металами йде з великими швидкостями, то в таких паливних елементах не можуть бути використанні водні електроліти.

Деякі метали, гідразін і водень окислюються з великими швидкостями вже при температурі t=20C. Метанол СН3ОН може окислюватися з достатніми швидкостями тільки при наявності активних каталізаторів. А окис вуглецю СО і аміак NН3 потребує додаткового створення досить високої робочої температури (t=200C).

Електрохімічний еквівалент визначається з рівняння

Ке=М/(ZФ),

де М - молярна маса речовини, кг/моль;

Z - кількість електронів, що беруть участь в реакції;

Ф=96500 Ас/моль - число Фарадея.

По електрохімічному еквіваленту палива можливо розмістити в такій послідовності:

Н2, СН4, С, СН3ОН, NН3, Li, N2Н4, Al, Mg, СО, Nа, Zn.

Електрохімічний еквівалент впливає на економічність паливного елемента. Враховуючи, що по закону Фарадея для здобуття 1Ф кількості електроенергії необхідно витратити 1г водню або М/Z грамів любої речовини. можливо визначити питомий видаток „mе” реагентів для здобуття 1кВт год електроенергії:

mе=М1000/(ZФЕе)=Ке1000/(Ее),

де М - молярна маса речовини. Кг/моль;

Z - кількість електронів, що беруть участь в реакції;

Ф - 96500 Ас/моль - число Фарадея;

е - ефективний ККД паливного елемента.

При температурі реакції tp=25C для паливного елемента Е=1,23 В, а ЕРС вуглець-кисневого - Е=1,02 В.

При навантаженні паливного елемента напруга на його затискачах становиться менш ніж ЕРС за рахунок падіння напруги в електроліті і на електродах.

Падіння напруги в електроліті (омічна поляризація) пропорційне щільності струму „І” і внутрішньому опору елемента „rвн”

Uом=SІrвн, (4.1)

де S - площа електродів.

Падіння напруги в електроліті (кінетична поляризація) пов'язана з сповільнюванням електрохімічних реакцій і зміненням активних речовин біля електродів.

Кінетична поляризація може бути зменшена за рахунок збільшення швидкості хімічних реакцій. Це може бути здійснено підвищенням робочої температури процесу і використанням каталізаторів.

Поряд з тім, з ціллю виключення з робочого діапазону паливного елемента режиму насичення щільність струму повинна бути більше значення граничної щільності

Іzp = ZФDCo, (4.2)

де D - коефіцієнт дифузії;

Со - концентрація в об'ємі розчину;

- товщина шару електроліту, через який йде дифузія.

Гранична щільність струму може бути збільшена шляхом підвищення тиску реагентів і зменшення товщини дифузійного шару за рахунок переміщування електроліту.

Робочу напругу і щільність струму вибирають з умовою забезпечення максимальної потужності і достатньо високого значення ККД.

Сучасні паливні елементи в основному використовують в якості пального водень, а окислювача - кисень.

Зберігання водню ускладнюється із-за великої його текучості і вибухонебезпечності. Тому доцільнішим є здобування водню з різних речовин (наприклад, аміаку, бензину, метанолу) в спеціальних генераторах (рис. 4.1).

З аміаку, який зберігається в балонах при тиску p=0,8-0,9 МПа і температурі t=20-25C, водень здобувається за рахунок дисоціації в присутності залізного каталізатора і без попередньої очистки подається в батарею паливних елементів. Для забезпечення нормальної роботи ЕРХ при великих потужностях в схемі є пусковий ресивер, який поповнюється сумішшю (Н2+N2) на малих навантаженнях.

В схемі також передбачається регулятор видатку палива і регулятор тиску, який забезпечує автоматичне управління здобуванням і подачею палива. Підігрівач забезпечує підтримання оптимальної температури (90-95C) з умови протікання хімічної реакції.

В деяких випадках доцільно використати в електрохімічних генераторах кисень повітря. Для цього повинно здійснюватися його очищення від двоокису вуглеця, який в присутності луги може створювати неприємні для роботи електродів сполучення.

Повітря до паливних елементів (5) може подаватися вентилятором (1) через підігрівач (2), зворотній клапан(3) і фільтр (4) з вапном (рис.4.2).

Для виведення води з зони реакції використовуються:

- дифузія пари води на поверхні з більш низьким парціальним тиском;

- стікання води під дією гравітаційних та капілярних сил;

- випаровування у потік газу;

- циркуляція електроліту.

Для відведення теплоти і забезпечення оптимальної температури паливних елементів використовують системи терморегулювання:

- конвекцією і теплопровідністю у навколишнє середовище;

- випаровуванням продуктів реакції;

- циркуляцією електроліту;

- циркуляцією реагентів;

- використанням в будованих в батарею паливних елементів теплообмінників.

Регулювання вихідного значення напруги може бути досягнено регулюванням окремих паливних елементів або батареї паливних елементів. В першому випадку змінюють величину поляризаційних витрат за рахунок змінення тиску і температури процесу або омічного опору паливного елемента. В другому випадку в залежності від значення струму навантаження змінюють кількість підключених паливних елементів.

Електрохімічні генератори доцільно використати в діапазоні потужностей від одного до декількох десятків кВт.

Електрохімічні генератори вже широко використовуються в космосі. Безумовно, що в близький перспективі вони будуть використовуватися в якості автономних і резервних джерел енергії на електромобілях, при засвоєнні морів та океанів та в інших галузях народного господарства.

6. ВИБІР МОЖЛИВИХ СХЕМ ЕЛЕКТРОХІМІЧНИХ ГЕНЕРАТОРІВ ДЛЯ АВТОНОМНИХ ДЖЕРЕЛ ЕЛЕКТРИЧНОЇ ЕНЕРГІЇ

Характер схеми і склад електричної частини ЕХГ залежить від роду струму, на якому проводиться відбір потужності для споживачів.

Електроагрегати постійного струму (рис.6.1) повинні обладнуватись автоматичним регулятором напруги (АРН), що забезпечує постійність напруги на затискачах відбору потужності при змінах навантаження, і пристроєм захисту ЕХГ від нормальних режимів роботи.

Необхідність застосування АРН обумовлена високими вимогами до постійності напруги, в той час як ЕХГ має круто падаючу характеристику.

Як показали дослідження, для ЕХА змінного струму найбільш доцільним застосування паралельного інвертора струму (ПІ) з регулюючими індуктивностями і обмежуючими вентилями без силового погоджуючого трансформатора (рис.6.2) бо інвертора струму з штучною комутацією (ІІК) за третьою гармонікою (рис.6.3).

Відсутність трансформатора в схемі паралельного інвертора струму забезпечує зниження ваги і ціни ЕХА змінного струму, але призводить до необхідності мати нестандартну напругу ЕХГ (забезпечуючи стандартне інвертування напруги).

Дослідження показали, що мінімальні вага і ціна ЕХА з паралельним інвертором отримуються при стабілізованій вхідній напругі інвертора. Тому поряд з регулюванням напруги на стороні змінного струму доцільно передбачувати АРН на стороні постійного струму.

Для спрощення інвертора доцільно в якості регулюючих і обмежуючих вентилів використовують симетричні керовані вентилі.

В ЕХА змінного струму з відбором потужності також на постійному струмі застосування силового узгоджую чого трансформатора виявляється вимушеним, так як стандартною повинна бути напруга як змінного, так і постійного струму. У цьому випадку доцільно застосовувати схему інвертора з штучною комутацією по третій гармоніці, оскільки в його складі трансформатор необхідний по принципу дії.

При симетричному трьохфазному навантаженні напруга (фазна і лінійна) інверторів струму також симетрична. При необхідності живлення однофазних споживачів, ввімкнених на лінійну або на фазну напругу, можлива несиметрія і лінійних і фазних напруг.

Фазна напруга в ЕХА змінного струму може бути отримана шляхом створення штучної нейтралі на конденсаторній батареї. Ввімкнення конденсаторів в «зірку» не збільшує габаритів ваги і ціни інвертора.

Автоматичне регулювання напруги ЕХГ не може бути виконано, як показник дослідження, за рахунок зміни робочої температури, тиску або перепаду тиску газів в наслідок великої інерційності процесу зміни ЕРС. Найбільш сприятливим способом регулювання напруги ЕХГ є зміна кількості ввімкнених ТЕ при зміні навантаження генератора. У відповідності до цього способу розроблено два типа АРН - ступінчатий і імпульсний.

Ступінчастий АРН (рис.6.4) заснований на принципі ввімкнення в роботу за допомогою тиристорів такої кількості елементів ЕХГ, котре при даному навантаженні забезпечує на виводах ЕХГ напругу, близьку до заданої. З цією метою від елементів генератора виконаний ряд відгалужень через тиристори.

Вивід, відповідній номінальній напрузі при на холостому ходу, вмикається через силовий діод Д. До кожного наступного виводу приєднується керований вентиль КВ. Вивід другої полярності наглухо приєднаний до навантаження Н. В схемі використані вентилі КВ з керуванням по ввімкненню і спеціальний пристрій для відключення. Якщо напруга на навантаження відрізняється від номінальної то датчик напруги ДН вмикає генератор імпульсів. Ці імпульси через розподілювач РІ надходять до керованих вентилів, послідовно переходячи від одного до іншого. Ввімкнення керованого вентиля, найближчого до діода Д, викликає зупинку струму через діод, тау як до діоду буде прикладатись запираюча напруга. При збільшенні навантаження буде послідовно вмикатись все більше число елементів, в результаті чого напруга буде дорівнювати номінальній (в межах заданої точності). Тоді датчик напруги зупинить генератор імпульсів. Після цього залишиться ввімкненим тільки один з керованих вентилів і процес перемикання зупиниться до тих пір, поки не зміниться напруга.

При підвищенні напруги більше заданого датчик напруги вимкне всі керовані вентилі подав імпульс на допоміжний вентиль КВ в пристрої відключення В. Тоді навантаження опиниться ввімкнений через діод Д на вивід холостого ходу. Якщо напруга при цьому не буде дорівнювати номінальній, то продовжиться перемикання керованих вентилів КВ в порядку зменшення їх номерів. При досягненні номінальної напруги пристрій перестає працювати, так як генератор запускаючи імпульсів зупиняється.

Завдяки швидкодії тиристорів забезпечується хороша якість регулювання. Точність регулювання напруги залежить від кількості відгалужень від елементів ЕХГ. До недоліків ступінчатого АРН відноситься необхідність в великій кількості вентилів. Так, для забезпечення точності регулювання ± 3% необхідно застосувати близько 9 вентилів.

Імпульсний АРН (рис.6.5) заснований на принципі періодичного перемикання напівпровідникових вентилів двох виводів ЕХГ змінною сквапністю. Вивід, ввімкнений через діод, відповідає заданій напрузі при холостому ході. Через тиристор приєднаний вивід, що забезпечить ввімкнення всіх елементів генератора і відповідає заданій напрузі при повному навантаженні.

Виконавчим органом схеми такого АРН являється керований вентиль КВ, силовий діод Д і фільтр, що складається із дроселя ДФ і конденсатора КФ.

Спосіб регулювання напруги полягає в тому, що навантаження почергово вмикається то на вивід номінальної напруги (при включеному керованому вентилі КВ), то на вивід холостого хода (через силовий діод Д при відключеному КВ). При ввімкненому керованому вентилі струм через діод не протікає, так як до нього прикладена напруга зворотної полярності.

При різному часі знаходження у ввімкненому стані керованого вентиля КВ отримаємо різну величину регулюючої напруги, яка складається із напруги на виході холостого ходу середньої величини отриманої при перемиканні добав очної пульсуючої напруги. Пульсація результуючої напруги згладжується фільтром, що складається із дроселя ДФ і конденсатора КФ.

При різному часі знаходження у ввімкненому стані керованого вентиля КВ отримаємо різну величину регулюючої напруги, яка складається із напруги на виході холостого ходу середньої величини отриманої при перемиканні добав очної пульсуючої напруги. Пульсація результуючої напруги згладжується фільтром, що складається із дроселя ДФ і конденсатора КФ.

Включення і відключення вентиля КВ забезпечується додатковим пристроєм, що складається з датчика напруги ДН, який діє на генератори відпираючи імпульсів ГВІ і запираючих імпульсів ГЗІ. Час включення КВ визначається зсувом запираючих імпульсів у відношенні до відпираючи. Цей час змінюється до тих пір поки напруга на навантаженні не буде рівною номінальній. У подальшому час включення не зміниться при незмінних умовах роботи ЕХГ.

В режимі холостого ходу або малих навантаженнях датчик напруги зупиняє роботу генератора. При цьому частина батареї постійно відключена. В режимі номінального навантаження працює тільки генератор відпираючи імпульсів і ЕХГ включений повністю.

Дана схема АРН потребує тільки одного додаткового вивода ЕХГ і одного керованого вентиля на повну потужність установки. Недоліком цієї схеми являється необхідність застосування додаткового згладжуючого фільтра.

6.1. Захист ЕХГ від струму короткого замикання і перенавантаження

Як і будь-яке інше джерело електроенергії, ЕХГ повинен бути забезпечений пристроєм захисту від струмів короткого замикання і перенавантаження.

Як показали експериментальні дослідження, основною причиною виходу з ладу ЕХГ є необоротна поляризація електродів. Зокрема, для ТЕ з металокерамічними електродами і каталізаторами - нікелем і сріблом Ренея - причиною виходу з ладу являється необоротна поляризація воденевих електродів, викликана окисленням каталізатора при великих густинах струму. Для інших типів ТЕ значне зниження характеристик може бути викликане зношенням кисневих електродів. Проте в усіх випадках можна визначити величину максимально допустимої поляризації електродів, при якій ще не наступає необоротність поляризації електродів. Цій величині поляризації відповідає мінімальна напруга ЕХГ, при якій можлива нормальна робота ЕХГ.

У зв'язку з цим найбільш прийнятним захистом ЕХГ з існуючих є захист мінімальної напруги з блокуванням по максимальному струмі (рис.6.6). Схема такого захисту складається з двох релейних документів 2,3, елемента « или - на » 5, « И » 7, витримки часу 8, підсилювача 10, комутаційного апарата 11. релейний елемент 3 є вимірювальним органом захисту мінімальної напруги і приєднується до затискачів ЕХГ 1 ( через потенціометр для настройки захисту). Релейний елемент 2 - вимірювальний орган захисту максимального струму, приєднаний до затискачів шунта Ш.

При нормальному режимі роботи напруга на затискачах ЕХГ номінальна, тому релейний елемент 3 знаходиться в робочому стані, тобто на його виході існує сигнал і, відповідно немає сигналу на виході елемента 5. при протіканні робочого струму падіння напруги на шунті Ш невелике, менше напруги спрацювання релейного елемента 2, тому на його виході сигнал відсутній.

При виникненні короткого замикання напруга на затискачах ЕХГ знизиться, а струм, що прямує через шунт стане струмом короткого замикання. У зв'язку з цим релейний елемент 2 спрацює, елемент 3 повернеться у вихідне положення. Відповідно, з'являються сигнали на входах елемента « И » 7 і сигнал на його виході. Після заданої витримки часу що здійснюється за допомогою реле часу 8, сигнал, підсилений підсилювачем 10, подається на комутаційний апарат 11, що відключає ЕХГ.

Використане в цьому захисті блокування по максимальному струму необхідне у зв'язку з можливістю хибного спрацювання захисту мінімальної напруги при обриві проводу.

Елементи 4, 6, 9, представляють собою захист від перенавантаження. Цей захист працює на логічну описаному вище захисту мінімальної напруги, проте має іншу уставку по напрузі, відповідну струмові перенавантаження, і діє на сигнал або на розвантаження ЕХГ.

6.2. Стан розробки ЕХГ за кордоном

Розробки ТЕ ведуться зараз у більшості розвинутих в промисловому відношенні країнах світу. Найбільш широко ці розробки ведуться в США, Англії, Франції, Німеччині, Японії і інших. Провідне місце серед них займає США.

Особлива увага приділяється розробці ЕХГ потужністю 0,1 - 15 кВт з використанням у якості вихідного палива насамперед рідких вуглеводів і іншого доступного палева і в якості окисника повітря. У відповідності з цим розробленні вуглеводно-повітряні ЕХА потужністю 0,5; 0,75 і 5 кВт.

Вуглеводно-повітряні ЕХА постійного струму потужністю 0,5 кВт спроектовані, виготовлений і випробовуваний фірмою Пратт енд Уітні.

Це переносний електроагрегат, виконаний в двох пакунках: в одній упаковці розміщений генератор вуглеводу, в іншому - ЕХГ.

Основні технічні показники агрегату по завданню:

- номінальна потужність 500 Вт ;

- номінальна напруга 32 В ;

- точність регулювання напруги 10% ;

- загальна вага ( включаючи паливо ) 32 кг ;

- загальний об'єм 0,113 м? ;

- строк служби 1000 год. ;

- температура навколишнього повітря від - 40 до +50?С ;

- відносна вологість повітря 100% .

Генератор вуглеводу заснований на конверсії рідкого вуглеводного палева з водяним паром і наступним відділенням вуглеводу з продуктів конверсії через мембрану із сплаву паладію зі сріблом. Для роботи генератора вуглеводу використовується рідке паливо з малим вмістом сірки і зм'якшеної води. Генератор виконаний по двохступінчастій схемі конверсії при тиску 16,8 атм.; перша ступінь - конверсія вуглеводів при температурі 760?С і молярному відношенні води до вуглеводу 3; друга ступінь - конверсія окис вуглецю при температурі 370?С. Конвертор окису вуглецю конструктивно з'єднаний з дифузійним роз'єднувачем вуглецю. Теплообмінник перед конвертором окису вуглецю конструктивно з'єднаний з реформером. Завдяки цьому досягнута компактність генератора водню. Для обігріву реформера використовується згорання залишкового газу після дифузійного роз'єднувача вуглецю. На вході у роз'єднувач вуглецю продукти конверсії складають 47% водню, метану 6%, окису вуглецю 1%, водяного пару 30% і двоокису вуглецю 16% по об'єму. Вміст вуглецю в залишковому газі знижується до 15%. Подача повітря в резервуар для згорання залишкового газу проходить за рахунок інжектору в якому тиск залишкового газу знижується від 16,8 атм. до 1,3 атм. Тому як горіння надлишкового газу проходить при надлишковому повітрі, то проходить повне згоряння без виділення токсичних газів. Температура вихлопних газів 230?С.

В електроагрегаті використовується воднево-повітряний ЕХГ зі зв'язаним лужним електролітом. В якості пористої матриці, просякнутої 30% розчином КОН, використовується азбестова мембрана розміщена поміж газодифузійними електродами ТЕ.

Газові камери ТЕ складаються з пластин магнію, які створюють ребристу зовнішню поверхню блоку елементів і використовуються одночасно для відводу тепла і електричного струму. Повний блок ЕХГ налічує 36 ТЕ, у ввімкнених послідовно по електричному струму і паралельно по підводу газів - водню і повітря. Робоча температура ТЕ 74?С. Для підтримання заданого температурного режиму ЕХГ розміщений в кожусі із теплоізоляційного матеріалу. Для видалення надлишкового тепла що виділяється в ЕХГ при роботі під навантаженням, виконується шляхом обдува повітрям ребристої поверхні генератора в середині кожуха. Для цього застосовується вентилятор з електроприводом. Подача повітря до електродів ЕХГ здійснюється повітродувкою, обладнаною також електроприводом. Живлення електроприводів здійснюється постійним струмом від ЕХГ. Повітря, що надходить до електродів очищується від домішків двоокису вуглецю в лужному фільтрі-поглиначеві. Видалення води, яка створюється в ЕХГ, здійснюється потоком повітря через електроди. Для забезпечення водного балансу в ЕХГ при різних режимах, температури і вологості навколишнього повітря передбачена рециркуляція повітря, яке пройшло через електроди. При повному навантаженні ЕХГ споживає 0,029 кг ? час водню, із яких 5 % витрачається на продувку і утилізується в реформері.

Електроагрегат успішно пройшов випробування. В процесі випробувань він пропрацював 502 години, окремі елементи пропрацювали 1850 годин. Від агрегату була отримана потужність від 50 до 550 Вт, тривалість роботи на одній заправці палива складала 6 годин при номінальній потужності 500 Вт. Загальний ККД дещо вищий 30%. Загальний об?єм агрегату склав 0,072 м куб., тобто менше заданого, проте вага кожного пакунку дорівнювала близько 18 кг, замість заданих 16 кг. Подальша робота націлена на зниження ваги і спрощення пристроїв контролю за роботою агрегату.

Тією ж фірмою Пратт енд Уітні виконано розробку безшумного вуглецеводяно-повітряного ЕХА постійного струму потужністю 3,5 кВт. Агрегат є пересувним джерелом живлення і виконаний в основному за тим же принципом, що і розглянутий вище ЕХА потужністю 0,5 кВт. Проте на відміну від останнього для нього прийнятна моноблочна компоновка, оскільки він не переносний. Крім цього охолодження ЕХГ виконано не за рахунок ребристої зовнішньої поверхні, а за допомогою контуру з охолоджуючою рідиною (водяного розчину етилен гліколю або силіконового масла) і повітряного радіатора. З цією метою між ТЕ ЕХГ розміщені охолоджуючі пластини, всередині яких циркулює охолоджуюча рідина і які виконують також роль газових камер і електричного контакту між різнополярними електродами послідовно з'єднуємих елементів.

Для забезпечення процесу конверсії рідкого вуглеводневого палива водою у складі ЕХА передбачений конденсатор, який відбирає воду із вихлопних газів реформера і відпрацьованого повітря ЕХГ. Охолодження конденсатора здійснюється потоком повітря, створеного вентилятором.

Основні технічні показники агрегату:

- номінальна потужність - 3,75 кВт;

- загальна потужність, враховуючи затрати на власні потреби - 4,23 кВт;

- номінальна напруга - 32 В;

- межі зміни напруги - 29 - 34,6 В;

- загальний ККД при повному навантаженні - 35,6 %;

- напруга на елементі при повному навантаженні - 0,815 В;

- щільність струму при повному навантаженні - 200 ма ? см?

- робоча температура ЕХГ - 80?С;

- коефіцієнт надлишкового повітря для ЕХГ - 1,67;

- загальна вага агрегату - 186 кг;

- в тому числі:

- вага ЕХГ - 1232 кг;

- вага генератору водню - 57 кг;

- загальний об'єм агрегату - 0,425 м?;

- строк служби агрегату -1000 год;

- температура навколишнього повітря від 32 до 40?С;

- відносна вологість повітря - 100%.

У відповідності з цими даними основні питомі показники агрегату будуть наступні:

- питома вага - 49,5 кг?кВт;

- питомий об'єм - 0,113 м??кВт;

- витрати потужності на власні потреби по відношенню до загальної потужності агрегату - 11,3%;

- вага ЕХГ до загальної ваги агрегату - 65,5 %;

- вага генератора водню до загальної ваги агрегату - 32,5 %;

Неважко побачити, що по основним показникам ( ККД, питомій вазі і інш.) цей ЕХА набагато кращий за існуючі електроагрегати тієї ж потужності.

Вуглеводневий ЕХА змінного струму потужністю 5 кВт спроектований, виготовлений і виготовлений фірмою Адліс - Чадмерс. Це пересувний електроагрегат, працюючий на рідкому вуглеводневому паливі з низьким вмістом сірки. Його основні вузли розроблені і виготовлені фірмами: ЕХГ - Адліс - Чадмерс, генератор водню - Енгельгард індастріс, інвертор - Варо корпорейшен.

Генератор водню виготовлений на основі парової конверсії вуглеводневого палива і подальшого виділення водню із продуктів конверсії в дифузійному роз'єднувачі з мембраною із паладієвого сплаву. Залишковий газ потрапляє в резервуар для згорання реформера, відпрацьованого повітря ЕХГ і води, що випаровується із електроліта. Для цього в технологічній схемі агрегату передбачено три конденсатора, що обдуваються вентиляторами. Загальна вага генератора водню 208 кг.

В електроагрегаті застосований воднево-повітряний зі зв'язаним лужним електролітом. Пориста азбестова матриця, що прокладена між електродами ТЕ, просякнута розчином КОН. Повітря до електродів ТЕ подається вентилятором. Очищення повітря від домішок двоокису вуглецю відбувається в лужному скрубері. Для забезпечення водного балансу застосовується додаткове видалення води із електроліту. Основна частина, що створюється в ЕХГ води видаляється потоком повітря, що пройшло через електроди. ЕХГ складається з 2 паралельно з'єднаних модулів, кожному з яких по 34 послідовно з'єднаних пари ТЕ. Кожна пара ТЕ з'єднана паралельно. Номінальна напруга ЕХГ 28 В, ККД ЕХГ при повному навантаженні 50 %. Загальна вага ЕХГ 274 кг.

Інвертор виконаний на тиристорах і перетворює постійний струм напругою 28 В в синусоїдальний змінний струм напругою 120 В і частотою 60 Гц. Номінальний ККД інвертора 85 %, його вага 23 кг.

Загальні технічні показники електроагрегату: вага близько 500 кг, об'єм 0,99 м?, ККД при повному навантаженні 27 %.

Цей агрегат по своїм показникам помітно поступається ЕХА 3,75 кВт фірми Пратт енд Уітні. Це викликано тим, що для нього вибрана більш складна технологічна схема. Достатньо сказати, що в його складі застосовується 3 конденсатора, на відміну від агрегату 3,75 кВт - в якому тільки один. Але проведені випробування агрегату довели, що навіть без внесення суттєвих змін його вага і габарити можуть бути значно знижені.

Поряд з ЕХА, заснованими на використанні ТЕ з лужним електролітом, ведуться розробки вуглецеводяно-повітряних електроагрегатів, в яких передбачено використання кислого електроліту. Прикладом цього є розробка ЕХА з середньо температурним ЕХГ з електролітом із фосфорної кислоти. Застосування такого електроліту дозволяє подавати продукти конверсії рідких вуглеводів безпосередньо електродам ЕХГ без попереднього виділення водню. Крім цього, відпадає необхідність очищення повітря від домішок двоокису вуглецю. Завдяки роботі ЕХГ при температурі близько 150 ?С із-за втрат енергії виділене в ньому тепло може бути утилізоване для випаровування води палева, що надходять на конверсію в реформер. Цим забезпечується економність і компактність агрегату. Але для електродів ЕХГ такого типу витрачається платина в якості каталізатору, що служить основною перепоною для їх практичного використання.

Визнаючи майбутнє за ТЕ, що працюють на рідкому вуглеводному палеві, спеціалісти США приділяють все таки значну увагу розробці гідразин-повітряних ЕХ, як компактного безшумного джерела електроживлення, не зважаючи на велику токсичність і високу ціну гідразину. В останні роки для була розроблена переносна гідразин-повітряна ЕХ потужністю 60 - 300 Вт. В них гідразин використовується безпосередньо у вигляді розчину в лужному електроліті ТЕ. Переносний ЕХ потужністю 300 Вт виготовлений фірмою Аліс - Чалмерс і складається із 76 елементів. З паливом на 8 год. Роботи він важить 18 кг. Готовність до дії через 5 хв., загальний строк служби 500 год.

Застосування інверторів для роботи у поєднанні з ЕХГ в значній мірі стримується із за їх значної ваги і високої ціни. Застосування найновіших типів тиристорів і кременевих транзисторів, розроблених в США в останні роки, призвело до значного зниження їх ваги. Якщо вага звичайної системи інвертування близько 10 кг?кВт, а його ККД 85%, то вага нового типу інверторів знижується до 0,8-2,3 кг?кВт,ККД підвищується до 95- 97%.

Інтенсивно ведеться розробка ТЕ і ЕХ також в Англії. Фірмою Шелл розроблений і випробуваний пересувний метанольно-повітряний ЕХА постійного струму потужністю 5 кВт. Склад ЕХА входять метанольний генератор водню і низькотемпературний воднево-повітряний ЕХГ з лужним електролітом. Генератор водню заснований на конверсії метанолу з водяним паром при 375 ?С і виділенні водню із суміші газів після конверсії в дифузійному срібно паладієвому роз'єднувачеві. ЕХГ складається з двох блоків по 62 послідовно з'єднаних елементів. Електроди ТЕ виготовленні з мікропористого полівінілхлориду. Напруга на затискачах ЕХГ змінюється від 120 до 70 В при зміні режиму роботи від холостого ходу до повного навантаження. Витрати потужності на власні потреби складають 900 Вт. Загальний ККД агрегату при повному навантаженні 30%. Запас палива в баці передбачений на 12 год. роботи. Загальна вага агрегату з запасом палива складає 680 кг. Цей агрегат являється результатом однієї з перших спроб створення діючих установок і тому його питомі вагові і об'ємні показники виявились низькими.

ВИСНОВКИ

В результаті проведеного аналізу було з'ясовано, що процес генерування енергії в паливних елементах описується, як процес обміну електронами між паливом і окислювачем з утворенням нового хімічного сполучення.

Сучасні паливні елементи в основному використовують в якості пального водень, а окислювача - кисень.

Зберігання водню ускладнюється із-за великої його текучості і вибухонебезпечності. Тому доцільнішим є здобування водню з різних речовин (наприклад, аміаку, бензину, метанолу) в спеціальних генераторах.

В деяких випадках доцільно використати в електрохімічних генераторах кисень повітря. Для цього повинно здійснюватися його очищення від двоокису вуглиця, який в присутності луги може створювати неприємні для роботи електродів сполучення.

Характер схеми і склад електричної частини ЕХГ залежить від роду струму, на якому проводиться відбір потужності для споживачів.

Електроагрегати постійного струму повинні обладнуватись автоматичним регулятором напруги, що забезпечує постійність напруги на затискачах відбору потужності при змінах навантаження, і пристроєм захисту ЕХГ від нормальних режимів роботи. Автоматичне регулювання напруги ЕХГ не може бути виконано, як показник дослідження, за рахунок зміни робочої температури, тиску або перепаду тиску газів в наслідок великої інерційності процесу зміни ЕРС. Найбільш сприятливим способом регулювання напруги ЕХГ є зміна кількості ввімкнених ТЕ при зміні навантаження генератора. У відповідності до цього способу розроблено два типа АРН - ступінчатий і імпульсний.

Електрохімічні генератори доцільно використати в діапазоні потужностей від одного до декількох десятків кВт. Вони вже широко використовуються в космосі. Безумовно, що в близький перспективі вони будуть використовуватися в якості автономних і резервних джерел енергії на електромобілях, при засвоєнні морів та океанів та в інших галузях народного господарства.

Страницы: 1, 2


ИНТЕРЕСНОЕ



© 2009 Все права защищены.