реферат бесплатно, курсовые работы
 

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ЛАБОРАТОРНЫМ РАБОТАМ ПО ФИЗИКЕ (МЕХАНИКА И ТЕРМОДИНАМИКА)

Термопара представляет собой два спаянных проводника из разных металлов.

Если спаи 12 и II имеют разную температуру, то на концах термопары (клеммы

8) возникает термоЭДС Е . Один конец термопары (12) погружен в нагреваемое

рабочее вещество (металл), а другой (11) - имеет температуру окружающего

воздуха T1, измеряемую термометром 9. ТермоЭДС прямо пропорциональна

разности температур горячего T2 и холодного T1 спаев

[pic]

[pic]

Коэффициент пропорциональности [pic] определяется по градуировочной

кривой термопары (рис. 8). Величина термоЭДС измеряется цифровым

вольтметром 10 через равные промежутки времени после нагревания тигля с

рабочим веществом, а также при охлаждении рабочего вещества. Температура

Т2, вычисляется по формуле T2 = ?T + T1.

Порядок выполнения работы

1. Соединить проводниками клеммы 8 термопары со входом цифрового

вольтметра. Положить в нагреватель не более четверти таблетки сухого

горючего. Включить цифровой вольтметр.

[pic]

2. Зажечь сухое горючее, включить секундомер и производить измерение

ЭДС через каждые 10 с.

3. После того как будет отмечено несколько одинаковых значений ЭДС

(соответствующих плавлению металла), продолжать измерения, пока температура

не начнет устойчиво повышаться. Через 3-4 измерения потушить (задуть) сухое

горючее.

4. Снять кривую охлаждения. Для этого измерять Е, через каждые 10 с по

мере охлаждения металла.

5. По графику градуировки термопары определить разность температур ?Т

для каждого значения ЭДС при плавлении и кристаллизации металла.

6. Определить комнатную температуру T1 и, прибавив ее к значениям ?T ,

полученным из графика, найти и записать температуру металла,

соответствующую каждому измерению.

7. Построить графики зависимости температуры T металла от времени при

плавлении и кристаллизации.

8. По графикам определить среднюю температуру плавления и

кристаллизации.

9. По температуре плавления и данным табл.2 идентифицировать рабочее

вещество и найти его удельную теплоту плавления.

10. По формуле (39) определить теплоту плавления для данной массы

рабочего вещества (m = 85 г) и, используя соотношение (38), вычислить

изменение энтропии фазового перехода для случая плавления и кристаллизации.

II. Определить погрешности изменения энтропии.

Таблица 2

|Металл |Тпл, К |rn, кДж/кг |

|I. Алюминий |931,1 |396,79 |

|2. Висмут |542 |54,4 |

|3. Олово |504,86 |61,12 |

|4. Свинец |600,4 |20,93 |

|5. Серебро |1233 |92,09 |

|6. Сурьма |903,5 |101,72 |

|7. Цинк |692,5 |111.35 |

|8. Сплав: олово 61 %, | | |

|свинец 39 % |427 |45.44 |

|9. Сплав: олово 40 %, | | |

|свинец 60 % |611 |37 |

|10. Сплав: олово 30 %, | | |

|свинец 70 % |525 |33 |

Контрольные вопросы и задания

1. Что называется фазовым переходом первого рода, второго рода?

2. Что называется плавлением и кристаллизацией твердых тел.

3. Раскройте сущность физического смысла изменения энтропии при

плавлении и кристаллизации твердых тел.

4. Какие системы называют гомогенными и гетерогенными? Что называется

фазой в термодинамике?

5. Объясните ход температурной кривой при плавлении и кристаллизации?

6. Что называется удельной теплотой плавления твердого тела? Как она

определяется?

7. ИЗМЕРЕНИЕ КОЭФФИЦИЕНТА ЛИНЕЙНОГО РАСШИРЕНИЯ МЕТАЛЛА

Цель работы

Определить сопротивление не нагретой и нагретой металлической

проволоки, ее удлинение при нагревании и коэффициент линейного расширения.

Приборы и принадлежности

Нихромовая проволока (Ni 90 %, Сr 10 %), источник питания постоянного

тока, вольтметр, амперметр, пружина, шкала для измерения длины проволоки.

Теоретическое введение

Опыт показывает, что с повышением температуры происходит расширение

твердя тел, называемое тепловым расширением. Для характеристики этого

явления введены коэффициенты линейного и объемного расширения. Пусть l0 -

длина тела при температуре 0 ?С. Удлинение этого тела ?l при нагревании

его до температуры t°С пропорционально первоначальной длине l0 и

температуре:

[pic]

где ? - коэффициент линейного расширения, характеризующий относительное

удлинение ?l/l, происходящее при нагревании тела на 1 К.

Длина тела при температуре t

[pic]

отсюда

[pic]

Тепловое расширение большинства твердых тел весьма незначительно.

Поэтому длина l0 при 0 °С очень мало отличается от длины l при другой

температуре t, например комнатной. Поэтому в выражении коэффициента

линейного расширения (41) l0 можно заменить на l1, а l - на длину l2 при

температуре t2, значительно большей, чем t1:

[pic]

Причина расширения твердых тел при нагревании - возрастание амплитуды

тепловых колебаний атомов. График зависимости потенциальной энергии

взаимодействия соседних атомов от расстояния между их центрами r приведен

на рис. 9. Пунктиром показан уровень полной энергии E взаимного колебания

атомов при данной температуре. При данной энергии Е расстояние между

атомами при тепловых колебаниях изменяется от r1 до r2. Если r0

сближаются), между атомами действуют силы отталкивания. Когда r=r0, полная

энергия равна кинетической энергии теплового колебательного движения. При

уменьшении r до r1 происходит переход кинетической энергии в потенциальную

энергию взаимодействия атомов. Далее под действием сил отталкивания атом

движется в сторону увеличения r . Его кинетическая энергия возрастает, а

потенциальная - уменьшается. Когда r становится больше r0, возникают силы

притяжения между атомами, кинетическая энергия атома уменьшается, а

потенциальная увеличивается. В точке r=r2, полная Е энергия переходит в

потенциальную. Далее под действием сил притяжения атомы начинают сближаться

И весь процесс колебаний атома между точками r1 и r2 повторяется.

[pic]

Как видно из рис.9, вследствие несимметричности кривой и(r) среднее

расстояние между соседними атомами при данной температуре

[pic]

больше, чем r0, и возрастает с ростом температуры, так как увеличивается

полная энергия атома.

Описание лабораторной установки и метода измерений.

Схема лабораторной установки приведена на рис. 10.

[pic]

Нихромовая проволока 1 закреплена между клеммами 2, 3, причем клемма 3

соединена с растягивающей пружиной 4. По проволоке течет постоянный ток.

Сила тока I измеряется амперметром A, а напряжение U вольтметром V . По

закону Джоуля - Ленца в проводнике, по которому течет ток, выделяется тепло

[pic]

зависящее от времени его прохождения t, сопротивления проводника R и силы

тока I. Проводник нагревается, сопротивление металла увеличивается с ростом

температуры по закону

[pic]

где R1 - сопротивление проводника при комнатной температуре t1°С;

R2 - его сопротивление при нагревании до температуры t2°С;

? - температурный коэффициент сопротивления нихромовой проволоки,

[pic]

Из соотношения (43) можно определить разность температур

[pic]

зная сопротивления R1 и R2.

Сопротивление R1, определяется по формуле

[pic]

где ? - удельное сопротивление нихрома при t1 = 20 °С; [pic];

l1 - длина проволоки при комнатной температуре, м, l1 = 0,34; d - ее

диаметр, мм, d = 0,4.

Сопротивление проволоки R2 при температуре t2 определяется по закону

Ома для участка цепи

[pic]

Удлинение проволоки [pic] при нагревании измеряется по шкале 5.

Порядок выполнения работы

1I. Собрать схему рис. 9. Включить источник питания. Подождать 2-3 мин,

пока проволока не нагреется до максимальной температуры и не наступит

тепловое равновесие. Измерить силу тока, напряжение и удлинение проволоки

?l. Опыт повторить три раза, определить средние значения I и U.

2. Измерить температуру воздуха t1 °С в лаборатории.

3. По формуле (45) вычислить сопротивление проволоки R1 при температуре

t1 0C.

4. Для средних значений I и U определить сопротивление проволоки R2 при

температуре t2 0С, используя закон Ома (46).

5. Используя соотношение (44), вычислить разность температур t2 - t1.

Найти температуру нагретой проволоки t2.

6. По формуле (42) определить коэффициент линейного расширения ? для

нихромовой проволоки.

7. Определить погрешности измерения R2, t2, ?.

8. Сравните результаты измерения ? с табличным значениям.

Контрольные вопросы и задания

1. Что называется коэффициентом линейного расширения твердых тел?

2. Объясните причину теплового расширения твердых тел.

3. Как определяется в работе удлинение проволоки?

4. Как определяется сопротивление проволоки R1 при комнатной

температуре t1, и сопротивление нагретой проволоки?

5. Почему при прохождении тока по металлическому проводнику он

нагревается?

6. Как изменяется сопротивление проводника при изменении температуры?

7. Как определяется в работе температура нагретой проволоки?

8. Как изменяется длина твердого тела при нагревании?

9. Как можно определить количество теплоты, выделившееся в проводнике

при прохождении тока?

ЧАСТЬ П

I. ИЗУЧЕНИЕ РАВНОУСКОРЕННОГО ДВИЖЕНИЯ И ОПРЕДЕЛЕНИЕ УСКОРЕНИЯ

СВОБОДНОГО ПАДЕНИЯ НА ПРИБОРЕ АТВУДА

Цель работы

Изучить равноускоренное движение и определить ускорение свободного

падения на приборе Атвуда.

Приборы и принадлежности

Прибор Атвуда, дополнительные сменные грузики.

Описание экспериментальной установки

Экспериментальная установка (рис. 11) собрана на платформе 1 с

вертикальной колонной 2 и представляет собой систему грузов 3, соединенных

между собой нитью, переброшенной через блок 4. Масса каждого груза равна М

= 60 г. Блок 4 для уменьшения сил трения в опоре смонтирован в подшипнике

5, а электромагнитная фрикционная муфта 6 обеспечивает начальную фиксацию

грузов и их торможение в конце перемещения. Блок с фрикционной муфтой

закреплен на верхнем конце колонны 2, а между блоком и основанием 1 имеются

три подвижных кронштейна 7, 8 и 9, расстояние между которыми определяется с

помощью миллиметровой шкалы 10, расположенной на колонне 2.

Верхний кронштейн 7, оснащенный риской, служит для фиксации начального

положения системы грузов. Средний кронштейн 8 обеспечивает съем

дополнительного грузика 11, а фотоэлектрический датчик 12 на этом

кронштейне включает электронный секундомер в момент съема дополнительного

грузика. На нижнем кронштейне 9 есть еще един фотоэлектрический датчик 13,

выключающий секундомер и включающий электромагнитную муфту 6 для торможения

подвижной системы.

[pic]

В отсутствие дополнительного грузика 11 вся подвижная система находится

в состоянии равновесия и либо покоится, либо двигается равномерно.

Неравномерность движения в этом случае может быть обусловлена только

сопротивлением воздуха, наличием трения в опоре, моментом инерции блока и

весом нити. Дополнительный грузик 11, помещенный на один из основных

грузов, выводит систему из состояния равновесия, и при обесточенной

фрикционной муфте 5 система начинает двигаться. Это движение в первом

приближении является равноускоренным.

Таким образом, в рабочем состоянии прибора перемещение системы грузов

на участке между верхним 7 и средним 8 кронштейнами будет равноускоренным,

а на участке между средним 8 и нижним 9 кронштейнами - равномерным.

Секундомер прибора 14 фиксирует время перемещения рабочего (первого) груза

между средним и нижним кронштейнами, т.е. на участке равномерного движения

длиной S (рис. 12).

[pic]

Работа с прибором

I. При отключенном питании прибора проверить свободу перемещения

системы грузов и переместить рабочий правый груз в верхнее положение.

2. Включить клавишу "Сеть", проверить работу индикаторов и лампочек

фотоэлектрических датчиков: индикатор электронного секундомера должен

высвечивать “О” по всех разрядах, а лампочка светиться. При включенном

питании должна сработать электромагнитная муфта и зафиксировать положение

грузов.

3. Если на индикаторе отсутствует “О” во всех разрядах, то необходимо

нажать клавишу "Сброс".

4. Изменить начальное положение системы грузов можно следующим образом.

Придерживая балансировочный груз, нажать клавишу «Пуск» и, переместив

систему в нужное положение, отжать клавишу «Пуск». Нажатие клавиши «Пуск»

обесточивает электромагнитную муфту, предоставляя свободу перемещения

системе грузов.

5. Перед началом измерений аккуратно положить на рабочий правый груз

дополнительный грузик и проверить установку начального положения по

совпадений нижнего среза рабочего груза с риской на верхнем кронштейне.

6. Нажать клавишу «Пуск» и после остановки системы грузов записать

показания индикатора, указывающего время равномерного движения системы

между фотоэлектрическими датчиками.

7. Для возврата системы грузов в исходное состояние необходимо нажать

клавишу «Сброс» и, аккуратно опустив вниз балансировочный (левый) груз,

установить систему в исходное положение. При совпадении нижнего среза

рабочего груза с риской на верхнем кронштейне отжать клавишу «Пуск», в

результате чего положение грузов будет зафиксировано электромагнитной

муфтой.

8. Для изменения расположения среднего кронштейна следует освободите

фиксирующий винт, находящийся с его тыльной стороны, переместить кронштейн

в нужное положение и нажать фиксирующий винт.

Теоретическое введение

Найдем закон движения груза 3 с перегрузком 11 (см.рис. 11). Будем

пользоваться неподвижной системой координат, центр которой совмещен с осью

блока. Ось ОХ направим вниз. Пусть массы грузов 3 равны М, а масса

перегрузка - т.

На правый груз с перегрузком (см. рис. 13) действуют силы тяжести

(М+т)g и натяжения нити Т1. По второму закону Ньютона

[pic] (47)

где а - ускорение правого груза.

Применим второй закон Ньютона к движению левого груза. В силу

нерастяжимости нити ускорение левого груза разно ускорению правого груза по

абсолютной величине и направлено в противоположную сторону. Оно равно,

следовательно, а. Натяжение левого конца нити обозначим Т2. Тогда

[pic] (48)

Если пренебречь моментом инерции блока, натяжения T1 и T2 равны:

T1=T2 (49)

Решая совместно уравнения (47) и (48) с учетом (1.3), получаем:

[pic]

Движение правого груза на участке длиной S1, между кронштейнами 7 и 8

будет равноускоренным. В момент достижения грузом кронштейна 8 его скорость

[pic]

(начальная скорость правого груза была равна нулю).

После снятия кронштейном 8 грузика 11 дальнейшее движение правого груза

на участке длиной S между средним и нижним кронштейнами является

равномерным и осуществляется со скоростью, определяемой по формуле (51).

Время прохождения этого участка

[pic]

Измерив время t, можно из выражения (52) рассчитать величину ускорения

свободного падения:

[pic]

Порядок выполнения работы

1. Установить средний кронштейн на расстоянии S1 = 0,1 М от верхнего

кронштейна.

2. Положить на рабочий правый груз поочередно дополнительные грузики

массой m1, m2, m3 и измерить для каждого случая время t равномерного

движения системы на участке пути длиной S. Время t для каждого

дополнительного грузика измерять три раза.

3. Установить средний кронштейн поочередно на расстоянии S1= 0,2 и 0,3M

от верхнего кронштейна и снова измерить время t - прохождения системой

участка равномерного движения между средним и нижним фотодатчиками для трех

дополнительных грузиков.

4. Данные занести в таблицу.

5. По полученным данным рассчитать величины скоростей равномерного

движения системы для различных значений m и S1; найти значения квадратов

этих скоростей.

6. Построить график зависимости квадрата скорости равномерного движения

системы от величины пути S1 для различных значений массы дополнительных

грузиков.

7. По графикам определить значения ускорений a1, a2, и a3, с которыми

двигалась система на участке S1 для различных масс m1, m2, m3

дополнительных грузиков (учесть, что для равноускоренного движения

выполняется соотношение (1.5). Результаты занести в таблицу.

8. Пользуясь данными таблицы, рассчитать ускорение свободного падения

по формуле (53) для значений m1, m2, т3 и величин S1= 0,1м, S2=0,2м, S3=

0,3м.

9. Рассчитать теоретически значения ускорения системы грузов по формуле

(50) и сравнить с экспериментально полученными данными. При расчете

использовать значение g = 9,8 м/с2. Объяснить расхождение теоретических и

экспериментально наблюдаемых результатов.

10. Рассчитать погрешности определения ускорения свободного падения.

Для расчета воспользуемся формулой (53), считая m, M точно известными

величинами. Абсолютные погрешности измерения S и S1° считать равными 1 мм,

а среднюю погрешность измерения времени рассчитать по данным таблицы.

Контрольные вопросы и задания

1. Рассчитайте скорости системы грузов на равномерном участке их

движения, используя закон сохранения энергии, и сравните результат расчета

со значением скорости, полученным в эксперименте.

2. Что такое перемещение, скорость и ускорение материальной точки?

3. Что такое тангенциальное и нормальное ускорения? Какое ускорение вы

измеряли в данной работе?

2. ИССЛЕДОВАНИЕ ЗАКОНА СОХРАНЕНИЙ ЭНЕРГИИ И ОПРЕДЕЛЕНИЕ МОМЕНТА ИНЕРЦИИ

ТЕЛА С ПОМОЩЬЮ МАЯТНИКА МАКСВЕЛЛА

Страницы: 1, 2, 3, 4, 5


ИНТЕРЕСНОЕ



© 2009 Все права защищены.