реферат бесплатно, курсовые работы
 

Двойственная природа света, ее проявления. Шкала электромагнитных волн

Двойственная природа света, ее проявления. Шкала электромагнитных волн

Государственная Академия Управления

имени С. Орджоникидзе

Институт информационных систем управления

КУРСОВАЯ РАБОТА

НА ТЕМУ:

Двойственная природа света, ее проявления. Шкала электромагнитных волн.

Студент группы ММиИОЭ 1-2 Булатов А.В.

Научный руководитель: Карпенков С.Х.

Москва, 1998 год.

Оглавление

1.Оглавление……………………………………………………….…. 2

2.Аннотация…………………………………………………………... 3

3.Введение…………………………………………………………….. 4

4.Основная часть……………………………………………………... 6

5.Дифракция………………………………………………………….. 7

6.Дифракционная решетка…………………………………………... 9

7.Дисперсия………………………………………………………..… 10

8.Поляризация……………………………………………………….. 11

9.Фотоэффект………………………………………………………... 14

10.Шкала электромагнитных волн…………………………………... 17

11.Радиоволны………………………………………………………... 18

12.Инфракрасное излучение…………………………………………. 25

13.Видимый свет…………………………………………………….... 25

14.Ультрафиолетовое излучение…………………………………….. 26

15.Рентгеновские лучи……………………………………………….. 27

16.Гамма-излучение………………………………………………….. 28

17.Заключение………………………………………………………… 28

18.Список использованной литературы ……………………………. 30

Аннотация

Чувствительность нашего зрительного аппарата к свету чрезвычайно

велика. По современным измерениям для получения светового ощущения

достаточно, чтобы на глаз при благоприятных обстоятельствах попадало около

10-17Дж световой энергии в секунду, т. е. мощность, достаточная для

ощутимого светового раздражения, равны 10-17Вт. Трудно переоценить значение

света в продуктивной жизни человека, т. к. большинство информации поступает

в мозг человека именно через зрительные нервы.

Химическое действие света можно наблюдать при выцветании различных

красок.

Нагревание тел при поглощении света есть самый общий и наиболее легко

осуществимый процесс, который может быть использован для обнаружения и

использования световой энергии.

Освещение металлической поверхности может вызвать вырывание из нее

электронов.

Из перечисленных примеров видно, сколь разнообразны могут быть

действия света поэтому, в данной работе раскрывается природа света, и

объясняются многие явления им вызываемые.

Введение

Первые научные гипотезы о природе света были высказаны в 17 веке. К

этому времени были обнаружены два замечательных свойства света –

прямолинейность распространения в однородной среде и независимость

распространения световых пучков, т.е. отсутствие влияния одного пучка света

на распространение другого светового пучка.

И. Ньютон в 1672 г. высказал предположение о корпускулярной природе

света. Против корпускулярной теории света выступали современники Ньютона –

Р. Гук и Х. Гюйгенс, разработавшие волновую теорию света.

Скорость света. Первым большим успехом в изучении природы света было

измерение скорости света.

Самый простой способ измерения скорости света заключается в измерении

времени распространения светового сигнала на известное расстояние.

Например, можно встать с электрическим фонарем напротив зеркала, в момент

включения фонаря запустить секундомер, а в момент времени, соответствующий

возвращению света, отраженного зеркалом, остановить секундомер. По

измеренному времени t и расстоянию 2l, пройденному светом, находится

скорость c света:

c=2l/t

Однако попытки осуществления такого рода опытов оканчивались неудачей,

никакого запаздывания света даже при расстоянии до зеркала в несколько

километров обнаружить не удалось.

Впервые экспериментально скорость света была определена

астрономическим методом. Датский ученый Олаф Ремер (1644-1710) в 1676 г.

обнаружил, что при изменении расстояния между Землёй и планетой Юпитер

вследствие их обращения вокруг Солнца происходит изменение периодичности

появления спутника Юпитера Ио из его тени. В том случае, когда Земля

находится по другую сторону от Солнца по отношению к Юпитеру, спутник Ио

появляется из-за Юпитера на 22минуты позже, чем это должно произойти по

расчетам. Но спутники обращаются вокруг планет равномерно, - следовательно,

это запаздывание кажущееся. Ремер догадался, что причиной запаздывания

появления спутника Юпитера при увеличении расстояния между Землёй и

Юпитером является конечность скорости света. При перемещении Земли на

противоположную сторону ее орбиты расстояние между Землёй и Юпитером

увеличилось на диаметр земной орбиты, т.е. на 300млн. км. Разделив это

расстояние на кажущееся время запаздывания, Ремер нашел, что скорость света

превышает 200 000 км/с.

Более точные измерения показывают, что скорость света равна 299 792

км/с или примерно 300 000 км/с.

Электромагнитная природа света. Одним из наиболее трудных для волновой

теории света был вопрос о том, что же колеблется при распространении

световых волн, в какой среде они распространяются.

На вопрос о природе света и механизме его распространения давала ответ

гипотеза Максвелла. На основании совпадения экспериментально измеренного

значения скорости света в вакууме со значением скорости распространения

электромагнитных волн Максвелл высказал предположение, что свет –

электромагнитные волны. Эта гипотеза подтверждается многими

экспериментальными фактами. Представлениям электромагнитной теории света

полностью соответствуют экспериментально открытые законы отражения и

преломления света, явления интерференции, дифракции и поляризации света.

Корпускулярно-волновой дуализм. Законы фотоэффекта, явления

взаимодействия света с веществом электромагнитная теория света объяснить не

может. В 20 веке в физике утвердились представления о корпускулярно-

волновом дуализме свойств света.

Тот факт, что свет в одних опытах обнаруживает волновые свойства, а в

других – корпускулярные, означает, что природа света более сложна, чем

природа привычных нам тел окружающего мира. Свет не является совокупностью

частиц, подобных маленьким дробинкам, нельзя его представлять себе и

подобным звуковым волнам или волнам на поверхности воды.

В любых световых явлениях при глубоком их изучении обнаруживается

неразрывная связь корпускулярных и волновых свойств света.

Основная часть

Рассматривая двойственную природу света, следует понимать, что эта

двойственность означает одновременное наличие у света молекулярных и

волновых свойств. Так какие же свойства присущи свету и как их отличать

друг от друга? Я предлогаю следущую таблицу:

Свойства света

|Волновые |Квантовые |

|-отражение |-фотоэффект |

|-преломление |-давление света |

|-интерференция |-эффект Комптона |

|-поляризация |-отражение |

|-дисперсия | |

|-давление света | |

Сначала напомню ключевые понятия.

Интерференция – физическое явление перераспределения волновой энергии в

пространстве при наложении монохроматичных (одинаковой частоты колебаний)

волн.

Поляризация – физический процесс создания определенного направления

колебаний вектора напряженности в электромагнитной волне.

Дисперсия – зависимость показателя преломления вещества от длинны волны

падающего излучения.

Дифракция (результат интерференции) – физическое явление нарушения

прямолинейного распространения волн в неоднородных средах.

Фотоэффект- явление вырывания электронов с поверхности тел под действием

света.

Эффект Комптона- явление изменения длины волны излучения при его

рассеивании.

Легко заметить, что некоторые явления включены в обе колонки. Это

означает, что их природу можно объяснить как с квантовых, так и с волновых

позиций. Однако существуют как число волновые свойства света (поляризация,

дисперсия, дифракция), так и квантовые(фотоэффект и эффект Комптона).

Рассмотрим их чуточку подробнее.

Дифракция

Простейший случай нарушения законов геометрической оптики наблюдается в

случае прохождения света через очень малое отверстие, при этом наблюдается

несоблюдение правил прямолинейного распространения: свет на краях отверстия

заметно отклоняется в стороны, огибая края.

Так, свет, идущий от небольшого яркого источника через круглое

отверстие, должен по законам геометрической оптики дать на экране резко

ограниченный светлый кружок на темном фоне. Такая картина и наблюдается при

обычных условиях опыта. Но если расстояние от отверстия до экрана в

несколько тысяч раз превосходит размеры отверстия, то удается наблюдать

важные детали явления: образуется более сложная картина, которая состоит из

совокупности светлых и темных концентрических колец, постепенно переходящих

друг в друга. При другом соотношении между диаметром отверстия и

расстоянием до экрана в центре картины может быть темное пятно. Этот случай

совершенно необъясним с позиции геометрической оптики, однако он получает

простое объяснение с точки зрения волновой теории и является естественным

следствием этой теории.

Появление чередующихся колец или полос в области геометрической тени

французский физик Френель объяснил тем, что световые волны, приходящие из

разных точек отверстия в одну точку на экране, интерферируют между собой.

Метод зон Френеля для объяснения дифракции на отверстии.

1) Разобьем волновой фронт, находящийся в пределах отверстия, из точки

наблюдения на отдельные участки (зоны).

2) Если из данной точки отверстие разбивается на четное число зон, то в

этой точке наблюдается дифракционный минимум, а если в отверстие

укладывается нечетное число зон, то максимум.

В нашей жизни мы не встречаем дифракции на отверстии и это не

удивительно, т. к. для этого необходимо чтобы размер отверстия был

соизмерим с длинной волны.

Дифракционная решетка

Дифракция света используется в спектральных приборах. Одним из

основных элементов во многих спектральных приборах является дифракционная

решетка. Обычно применяются отражательные решетки, но я рассмотрю принцип

действия решетки, представляющей собой непрозрачную пластину с нанесенной

на неё системой параллельных непрозрачных полос, расположенных на

одинаковом расстоянии d друг от друга.

Пусть на решетку падает монохроматическая волна с плоским волновым

фронтом ( Поверхность, на которой все точки колеблются в одинаковой фазе,

называется волновой поверхностью или волновым фронтом.). В результате

дифракции из каждой щели свет распространяется не только в первоначальном

направлении, но и по всем другим направлениям.

Если за решеткой поставить собирающую линзу, то на экране в фокальной

плоскости параллельные лучи от всех щелей соберутся в одну полоску.

Параллельные лучи, идущие от краев соседних щелей, имеют разность хода: ?l

=d *sin ?, где d – расстояние между соответствующими краями соседних щелей,

называемое периодом решетки; ? - угол отклонения световых лучей от

перпендикуляра к плоскости решетки. При равенстве разности хода ?l целому

числу длин волн d *sin ? = ? *? (? - длина волны падающего света)

наблюдается интерференционный максимум света. Линза не вносит разности

хода. Как следует из последнего уравнения, условие интерференционного

максимума для каждой световой волны выполняется при своем значении угла

дифракции ?. В результате при похождении через дифракционную решетку пучок

белого света разлагается в спектр.

Угол дифракции имеет наибольшее значение для красного света, так как

длина волны красного света больше всех остальных в области видимого света.

Наименьшее значение угол дифракции ? имеет для фиолетового света.

Дисперсия

Вопрос о причине различной окраски тел естественно занимал ум человека

уже давно. Очень большое количество наблюдений, и чисто житейских, и

научных, было в распоряжении исследователей, но вплоть до работ Ньютона

(начавшихся около 1666 г.) в этом вопросе царила полная неопределенность.

Ньютон поставил целый ряд опытов, показывающих, что для узкого цветного

пучка, выделенного из спектра, показатель преломления имеет вполне

определенное значение, тогда как преломление белого света можно только

приблизительно охарактеризовать одним каким-то значением этого показателя.

Сопоставляя подобные наблюдения, Ньютон сделал вывод, что существуют

простые цвета, не разлагающиеся при прохождении через призму, и сложные,

представляющие совокупность простых, имеющих разные показатели преломления.

В частности, солнечный свет есть такая совокупность цветов, которая при

помощи призмы разлагается, давая спектральное изображение щели.

Таким образом, в основных опытах Ньютона заключались два важных открытия:

1) Свет различного цвета характеризуется разными показателями

преломления в данном веществе (дисперсия {Дисперсия – лат.

dispersus – рассеянный, разбросанный. Наблюдавшееся Ньютоном

явление следует точнее называть дисперсией показателя преломления,

ибо и другие оптические величины обнаруживают зависимость от длины

волны (дисперсию)}).

2) Белый цвет есть совокупность простых цветов.

Открытие явления разложения белого света на цвета при преломлении

позволило объяснить образование радуги и других подобных метеорологических

явлений. Преломление света в водяных капельках или ледяных кристалликах,

плавающих в атмосфере, сопровождается благодаря дисперсии в воде или льде

разложением солнечного света. Рассчитывая направление преломления лучей в

случае сферических водяных капель, мы получаем картину распределения

цветных дуг, точно соответствующую наблюдаемым а радуге. Аналогично,

рассмотрение преломления света в кристалликах льда позволяет объяснить

явления кругов вокруг Солнца и Луны в морозное время года, образование так

называемых ложных солнц, столбов и т. д.

Поляризация

Явления интерференции и дифракции, послужившие для обоснования волновой

природы света, не дают еще полного представления о характере световых волн.

Новые черты открываются через кристаллы, в частности через турмалин.

Возьмем две одинаковые пластинки турмалина, вырезанные так, что одна из

сторон прямоугольника совпадает с определенным направлением внутри

кристалла, носящим название оптической оси. Серия опытов показывает, что

интенсивность светового пучка, проходящего через пластинки турмалина,

зависит от взаимной ориентации двух кристаллов. При одинаковой ориентации

кристаллов свет проходит через второй кристалл без ослабления. Если же

второй кристалл повернут на 90( от первоначального положения, то свет через

него не проходит. Итак, свет, прошедший сквозь турмалин, приобретает особые

свойства. Свойства световых волн в плоскости, перпендикулярной направлению

распространения света, становится анизотропным, т. е. неодинаковыми

относительно плоскости, проходящей через луч и ось турмалина. Поэтому

способность такого света проходить через вторую пластинку турмалина зависит

от ориентации оптической оси этой пластинки относительно оптической оси

первой пластинки. Такой анизотропии не было в пучке, идущем непосредственно

от фонаря (или солнца), ибо по отношению к этому пучку ориентация турмалина

была безразлична.

Можно объяснить все наблюдавшиеся явления, если сделать следующие

выводы.

1) Световые колебания в пучке направлены перпендикулярно к линии

распространения света (световые волны поперечны).

2) Турмалин способен пропускать световые колебания только в том случае,

когда они направлены определенным образом относительно оси (например,

параллельно оси).

3) В свете фонаря (солнца) представлены поперечные колебания любого

направления и притом в одинаковой доле, так что одно направление не

является преимущественным.

Я буду в дальнейшем называть свет, в котором в одинаковой доле

представлены все направления поперечных колебаний, естественным светом.

Вывод 3 объясняет, почему естественный свет в одинаковой степени

проходит через турмалин при любой его ориентации, хотя турмалин, согласно

выводу 2, способен пропускать световые колебания только определенного

направления. Действительно, как бы ни был ориентирован турмалин, в

естественном свете всегда кажется одна и та же доля колебаний, направление

которых совпадает с направлением, пропускаемых турмалином. Прохождение

естественного света через турмалин приводит к тому, что из поперечных

колебаний отбираются только те, которые могут пропускаться турмалином.

Поэтому свет, прошедший через турмалин, будет представлять собой

совокупность поперечных колебаний одного направления, определяемого

ориентацией оси турмалина. Такой свет называется линейно поляризованным, а

плоскость, содержащую направление колебаний и ось светового пучка, -

плоскость поляризации.

Теперь становится понятным опыт с прохождением света через две

последовательно поставленные пластинки турмалина. Первая пластинка

поляризует проходящий через нее пучок света, оставляя в нем колебания

только одного направления. Эти колебания могут пройти через второй турмалин

полностью только в том случае, когда направление их совпадает с

направлением колебаний, пропускаемых вторым турмалином, т. е. когда его ось

параллельна оси первого. Если же направление колебаний в поляризованном

свете перпендикулярно к направлению колебаний, пропускаемых вторым

турмалином, то свет будет полностью задержан. Это имеет место, когда

пластинки турмалина, как говорят, скрещены, т. е. их оси составляют угол

90(. Наконец, если направление колебаний в поляризованном свете составляет

острый угол с направлением, пропускаемым турмалином, то колебания будут

попущены лишь частично.

Существуют кристаллы, еще сильнее задерживающие один из

поляризованных лучей, чем это происходит в турмалине (например, кристалл

йодистого хинина), так что кристаллическая пленка толщиной в десятую долю

миллиметра и даже тоньше практически полностью отделяет один из

поляризованных лучей.

Фотоэффект

Световая волна, падающая на тело, частично отражается от него, частично

походит насквозь, частично поглощается. В большинстве случаев энергия

поглощенной световой волны целиком переходит во внутреннюю энергию

вещества, что приводит к нагреванию тела. Нередко, однако, известная часть

этой энергии поглощенной энергии вызывает и другие явления. Очень важными

Страницы: 1, 2


ИНТЕРЕСНОЕ



© 2009 Все права защищены.